def test_CondenseGraphCRN_02(self):
        complexes = self.complexes
        reactions = self.reactions
        cplx = self.cplx
        rxn = self.rxn
        rs = self.rs

        rxn('A -> B')
        rxn('A -> C')
        rxn('B -> D')
        rxn('B -> E')
        rxn('C -> F')
        rxn('C -> G')

        enum = Enumerator(complexes.values(), list(reactions))
        enum.dry_run()

        enumRG = PepperCondensation(enum)
        enumRG.condense()
        self.assertEqual(
            enumRG.resting_sets,
            [rs('E'), rs('D'), rs('F'), rs('G')])
        self.assertEqual(
            enumRG.get_fates(cplx('A')),
            SetOfFates([[rs('E')], [rs('D')], [rs('F')], [rs('G')]]))
        self.assertEqual(enumRG.get_fates(cplx('C')),
                         SetOfFates([[rs('F')], [rs('G')]]))
        self.assertEqual(enumRG.get_fates(cplx('F')), SetOfFates([[rs('F')]]))
    def test_CondenseGraphCRN_03(self):
        complexes = self.complexes
        reactions = self.reactions
        cplx = self.cplx
        rxn = self.rxn
        rs = self.rs

        rxn('X -> T1', k=0.1)
        rxn('T1 -> T2')
        rxn('T2 -> T1')
        rxn('T1 -> A')
        rxn('T1 -> B')
        rxn('T2 -> T3')
        rxn('T3 -> D')
        rxn('T3 -> C')

        enum = Enumerator(complexes.values(), list(reactions))
        enum.k_fast = 0.5
        enum.dry_run()

        enumRG = PepperCondensation(enum)
        enumRG.condense()

        self.assertEqual(sorted(enumRG.resting_sets),
                         sorted([rs('X'),
                                 rs('A'),
                                 rs('B'),
                                 rs('C'),
                                 rs('D')]))

        self.assertEqual(enumRG.get_fates(cplx('X')), SetOfFates([[rs('X')]]))

        self.assertEqual(
            enumRG.get_fates(cplx('T1')),
            SetOfFates([[rs('A')], [rs('B')], [rs('C')], [rs('D')]]))
    def test_CondenseGraphCRN_01(self):
        complexes = self.complexes
        reactions = self.reactions
        cplx = self.cplx
        rxn = self.rxn
        rs = self.rs

        rxn('A -> B + C')
        rxn('B -> D + E', k=0.5)
        rxn('C -> F + G', k=1)
        #rxn('B + C -> A') # raises error

        enum = Enumerator(complexes.values(), list(reactions))
        enum.dry_run()
        #for r in enum.reactions: print r, r.rate
        #print enum.complexes

        enumRG = PepperCondensation(enum)
        enumRG.condense()
        self.assertEqual(enumRG.condensed_reactions, [])
        self.assertEqual(
            enumRG.resting_sets,
            [rs('E'), rs('D'), rs('F'), rs('G')])
        self.assertEqual(enumRG.get_fates(cplx('A')),
                         SetOfFates([[rs('E'),
                                      rs('D'),
                                      rs('F'),
                                      rs('G')]]))
Пример #4
0
    def test_condense_simple(self):
        complexes, reactions = read_pil("""
        # File generated by peppercorn-v0.5.0
        
        # Domain Specifications 
        length d1 = 15
        length t0 = 5
        
        # Resting-set Complexes 
        c1 = t0 d1 
        c2 = d1( + ) t0* 
        c4 = t0( d1( + ) ) 
        c5 = d1 
        
        # Transient Complexes 
        c3 = t0( d1 + d1( + ) ) 
        
        # Detailed Reactions 
        reaction [bind21         =      100 /M/s ] c1 + c2 -> c3
        reaction [open           =       50 /s   ] c3 -> c1 + c2
        reaction [branch-3way    =       50 /s   ] c3 -> c4 + c5
        """)

        # (rs1) c1                c4 (rs3)
        #         \              /
        #          <---> c3 ---->
        #         /              \
        # (rs2) c2                c5 (rs4)

        enum = Enumerator(complexes.values(), reactions)
        enum.enumerate() 
        enum.condense()
        for con in enum.condensed_reactions:
            assert con.rate_constant[0] == 50
        del enum

        # old interface ...
        c1 = PepperMacrostate([complexes['c1']])
        c2 = PepperMacrostate([complexes['c2']])
        c4 = PepperMacrostate([complexes['c4']])
        c5 = PepperMacrostate([complexes['c5']])
        cond_react = PepperReaction([c1, c2], [c4, c5], 'condensed')
        cond_react.rate_constant = 20, None

        enum = Enumerator(complexes.values(), reactions)
        enum.dry_run()
        enumRG = PepperCondensation(enum)
        enumRG.condense()
        for con in enumRG.condensed_reactions:
            assert con.rate_constant[0] == 20
    def test_sarma_fig4_CRN(self):
        complexes = self.complexes
        reactions = self.reactions
        cplx = self.cplx
        rxn = self.rxn
        rs = self.rs

        rxn('top + bot -> e27 ', k=4.5e+06, rtype='bind21     ')
        rxn('com1 + e29 -> e33', k=1.5e+06, rtype='bind21     ')
        rxn('bot + com2 -> e29', k=4.5e+06, rtype='bind21     ')
        rxn('com1 + com2 -> e1', k=1.5e+06, rtype='bind21     ')
        rxn('e1 -> com1 + com2', k=21.7122, rtype='open       ')
        rxn('e1 -> e6 + e7    ', k=9.52381, rtype='branch-3way')
        rxn('e1 -> e8         ', k=22.2222, rtype='branch-3way')
        rxn('e6 + bot -> e31  ', k=4.5e+06, rtype='bind21     ')
        rxn('e7 -> e15        ', k=22.2222, rtype='branch-3way')
        rxn('e8 -> e1         ', k=22.2222, rtype='branch-3way')
        rxn('e8 -> e6 + e15   ', k=9.52381, rtype='branch-3way')
        rxn('e8 -> e10 + e11  ', k=21.7122, rtype='open       ')
        rxn('e10 -> e6 + e17  ', k=9.52381, rtype='branch-3way')
        rxn('e15 -> e7        ', k=22.2222, rtype='branch-3way')
        rxn('e15 -> e17 + e11 ', k=21.7122, rtype='open       ')
        rxn('e17 + e11 -> e15 ', k=1.5e+06, rtype='bind21     ')
        rxn('e33 -> com1 + e29', k=21.7122, rtype='open       ')
        rxn('e33 -> e37       ', k=22.2222, rtype='branch-3way')
        rxn('e33 -> e38       ', k=0.000623053, rtype='branch-4way')
        rxn('e37 -> e33       ', k=22.2222, rtype='branch-3way')
        rxn('e37 -> e43       ', k=0.000623053, rtype='branch-4way')
        rxn('e37 -> e58 + e11 ', k=21.7122, rtype='open       ')
        rxn('e38 -> e31 + e7  ', k=16.6667, rtype='branch-3way')
        rxn('e38 -> e33       ', k=0.000623053, rtype='branch-4way')
        rxn('e38 -> e43       ', k=22.2222, rtype='branch-3way')
        rxn('e43 -> e47 + e11 ', k=21.7122, rtype='open       ')
        rxn('e43 -> e31 + e15 ', k=16.6667, rtype='branch-3way')
        rxn('e43 -> e37       ', k=0.000623053, rtype='branch-4way')
        rxn('e43 -> e38       ', k=22.2222, rtype='branch-3way')
        rxn('e47 -> e31 + e17 ', k=16.6667, rtype='branch-3way')
        rxn('e47 -> e58       ', k=0.000623053, rtype='branch-4way')
        rxn('e58 -> e47       ', k=0.000623053, rtype='branch-4way')

        enum = Enumerator(complexes.values(), list(reactions))
        enum.dry_run()

        enumRG = PepperCondensation(enum)
        enumRG.condense()
    def test_interface_02(self):
        complexes, _ = read_pil("""
        length a = 3
        length n = 1
        length b = 1
        length c = 4
        length ab = 4

        X = a( b( c( + ) ) )
        Y = ab( c( + ) )

        Xf = a b( c( + ) ) a*
        Xff= a b c( + ) b* a*
        Xb = a( b( c + c* ) )
        Y1 = ab c( + ) ab*
        Y2 = ab( c + c* )
        """)
        X = complexes['X']
        Y = complexes['Y']

        Xf = complexes['Xf']
        Xff = complexes['Xff']
        Xb = complexes['Xb']
        Y1 = complexes['Y1']
        Y2 = complexes['Y2']

        enum = Enumerator([X, Y], named_complexes=[X, Y, Xf, Xff, Xb, Y1, Y2])
        enum.max_helix = False
        enum.dry_run()
        self.assertEqual(sorted(enum.complexes), sorted([X, Y]))
        self.assertEqual(sorted(enum.resting_complexes), sorted([X, Y]))
        self.assertEqual(
            sorted(r.representative for r in enum.resting_macrostates),
            sorted([X, Y]))
        enum.enumerate()
        assert len(list(enum.complexes)) == 16
        with self.assertRaises(PeppercornUsageError) as e:
            enum.dry_run()
    def test_sarma_fig4_v1(self):
        complexes, reactions = read_pil("""
        # File generated by peppercorn-v0.5.0

        # Domain Specifications 
        length d1 = 15
        length d2 = 15
        length d3 = 5
        length d4 = 15
        length d5 = 5
        length d6 = 15
        length d7 = 5

        # Resting-set Complexes 
        bot = d1* 
        com1 = d3*( d2*( d1*( d5 d6 + ) ) ) d4 
        com2 = d6( d7( + ) ) d5* d1 d2 d3 
        e6 = d1 d2 d3 d4 
        e11 = d6 d7 
        e17 = d7* d6*( d5*( d1( d2( d3( + ) ) ) ) ) 
        e27 = d1*( + ) 
        e29 = d1*( + d6( d7( + ) ) d5* ) d2 d3 
        e31 = d1*( + ) d2 d3 d4 
        top = d1 

        # Transient Complexes 
        e1 = d6( d7( + ) ) d5*( d1 d2 d3 + d1( d2( d3( d4 + ) ) ) ) d6 
        e7 = d6( d7( + ) ) d5*( d1( d2( d3( + ) ) ) ) d6 
        e8 = d6 d7( + ) d6*( d5*( d1 d2 d3 + d1( d2( d3( d4 + ) ) ) ) ) 
        e10 = d7* d6*( d5*( d1 d2 d3 + d1( d2( d3( d4 + ) ) ) ) ) 
        e15 = d6 d7( + ) d6*( d5*( d1( d2( d3( + ) ) ) ) ) 
        e33 = d6( d7( + ) ) d5*( d1( d2 d3 + ) + d1( d2( d3( d4 + ) ) ) ) d6 
        e37 = d6 d7( + ) d6*( d5*( d1( d2 d3 + ) + d1( d2( d3( d4 + ) ) ) ) ) 
        e38 = d6( d7( + ) ) d5*( d1( d2 d3 + d1*( + ) d2( d3( d4 + ) ) ) ) d6 
        e43 = d6 d7( + ) d6*( d5*( d1( d2 d3 + d1*( + ) d2( d3( d4 + ) ) ) ) ) 
        e47 = d7* d6*( d5*( d1( d2 d3 + d1*( + ) d2( d3( d4 + ) ) ) ) ) 
        e58 = d7* d6*( d5*( d1( d2 d3 + ) + d1( d2( d3( d4 + ) ) ) ) ) 

        # Detailed Reactions 
        reaction [bind21         =      4.5e+06 /M/s ] bot + top -> e27
        reaction [bind21         =      1.5e+06 /M/s ] com1 + e29 -> e33
        reaction [bind21         =      4.5e+06 /M/s ] com2 + bot -> e29
        reaction [bind21         =      1.5e+06 /M/s ] com2 + com1 -> e1
        reaction [open           =      21.7122 /s   ] e1 -> com2 + com1
        reaction [branch-3way    =      9.52381 /s   ] e1 -> e6 + e7
        reaction [branch-3way    =      22.2222 /s   ] e1 -> e8
        reaction [bind21         =      4.5e+06 /M/s ] e6 + bot -> e31
        reaction [branch-3way    =      22.2222 /s   ] e7 -> e15
        reaction [branch-3way    =      22.2222 /s   ] e8 -> e1
        reaction [branch-3way    =      9.52381 /s   ] e8 -> e6 + e15
        reaction [open           =      21.7122 /s   ] e8 -> e10 + e11
        reaction [branch-3way    =      9.52381 /s   ] e10 -> e6 + e17
        reaction [branch-3way    =      22.2222 /s   ] e15 -> e7
        reaction [open           =      21.7122 /s   ] e15 -> e17 + e11
        reaction [bind21         =      1.5e+06 /M/s ] e17 + e11 -> e15
        reaction [open           =      21.7122 /s   ] e33 -> com1 + e29
        reaction [branch-3way    =      22.2222 /s   ] e33 -> e37
        reaction [branch-4way    =  0.000623053 /s   ] e33 -> e38
        reaction [branch-3way    =      22.2222 /s   ] e37 -> e33
        reaction [branch-4way    =  0.000623053 /s   ] e37 -> e43
        reaction [open           =      21.7122 /s   ] e37 -> e58 + e11
        reaction [branch-3way    =      16.6667 /s   ] e38 -> e7 + e31
        reaction [branch-4way    =  0.000623053 /s   ] e38 -> e33
        reaction [branch-3way    =      22.2222 /s   ] e38 -> e43
        reaction [open           =      21.7122 /s   ] e43 -> e11 + e47
        reaction [branch-3way    =      16.6667 /s   ] e43 -> e15 + e31
        reaction [branch-4way    =  0.000623053 /s   ] e43 -> e37
        reaction [branch-3way    =      22.2222 /s   ] e43 -> e38
        reaction [branch-3way    =      16.6667 /s   ] e47 -> e17 + e31
        reaction [branch-4way    =  0.000623053 /s   ] e47 -> e58
        reaction [branch-4way    =  0.000623053 /s   ] e58 -> e47
        """)

        enum = Enumerator(complexes.values(), reactions)
        #enum.enumerate() # or
        enum.dry_run()
        self.assertEqual(sorted(enum.reactions), sorted(reactions))

        enumRG = PepperCondensation(enum)
        enumRG.condense()
    def test_cooperative_binding(self):
        # cooperative binding with k-fast 25
        complexes, reactions = read_pil("""
        # File generated by peppercorn-v0.5.0
        
        # Domain Specifications 
        length a = 5
        length b = 5
        length x = 10
        length y = 10
        
        # Resting-set Complexes 
        C = x( y( + b* ) ) a* 
        CR = x( y( + y b( + ) ) ) a* 
        CRF = x( y + y( b( + ) ) ) a* 
        L = a x 
        LC = a( x + x( y( + b* ) ) ) 
        LCF = a( x( + x y( + b* ) ) ) 
        LR = a( x( + y( b( + ) ) ) ) 
        R = y b 
        T = x y 
        
        # Transient Complexes 
        LCR = a( x + x( y( + y b( + ) ) ) ) 
        LCRF1 = a( x( + x y( + y b( + ) ) ) ) 
        LCRF2 = a( x + x( y + y( b( + ) ) ) ) 
        
        # Detailed Reactions 
        reaction [bind21         =      1.5e+06 /M/s ] C + L -> LC
        reaction [bind21         =      1.5e+06 /M/s ] C + R -> CR
        reaction [open           =           20 /s   ] CR -> C + R
        reaction [branch-3way    =           30 /s   ] CR -> CRF
        reaction [branch-3way    =           30 /s   ] CRF -> CR
        reaction [bind21         =      1.5e+06 /M/s ] L + CR -> LCR
        reaction [bind21         =      1.5e+06 /M/s ] L + CRF -> LCRF2
        reaction [open           =           20 /s   ] LC -> C + L
        reaction [branch-3way    =           30 /s   ] LC -> LCF
        reaction [branch-3way    =           30 /s   ] LCF -> LC
        reaction [branch-3way    =           30 /s   ] LCR -> LCRF1
        reaction [branch-3way    =           30 /s   ] LCR -> LCRF2
        reaction [branch-3way    =           30 /s   ] LCRF1 -> LCR
        reaction [branch-3way    =           30 /s   ] LCRF1 -> T + LR
        reaction [branch-3way    =           30 /s   ] LCRF2 -> LCR
        reaction [branch-3way    =           30 /s   ] LCRF2 -> T + LR
        reaction [bind21         =      1.5e+06 /M/s ] R + LC -> LCR
        reaction [bind21         =      1.5e+06 /M/s ] R + LCF -> LCRF1
        """)
        L = complexes['L']
        C = complexes['C']
        R = complexes['R']
        T = complexes['T']
        LR = complexes['LR']
        LC = complexes['LC']
        CR = complexes['CR']
        CRF = complexes['CRF']
        LCF = complexes['LCF']
        LCR = complexes['LCR']
        LCRF1 = complexes['LCRF1']
        LCRF2 = complexes['LCRF2']

        # always resting sets
        rs1 = PepperMacrostate([L], memorycheck=False)
        rs2 = PepperMacrostate([C], memorycheck=False)
        rs3 = PepperMacrostate([R], memorycheck=False)
        rs4 = PepperMacrostate([T], memorycheck=False)
        rs5 = PepperMacrostate([LR], memorycheck=False)

        rs6 = PepperMacrostate([CR, CRF], memorycheck=False)
        rs7 = PepperMacrostate([LC, LCF], memorycheck=False)

        cplx_to_fate = {  # maps Complex to its SetOfFates
            L: SetOfFates([[rs1]]),
            C: SetOfFates([[rs2]]),
            R: SetOfFates([[rs3]]),
            T: SetOfFates([[rs4]]),
            LR: SetOfFates([[rs5]]),
            CR: SetOfFates([[rs6]]),
            CRF: SetOfFates([[rs6]]),
            LC: SetOfFates([[rs7]]),
            LCF: SetOfFates([[rs7]]),
            #NOTE: only rs4 and rs5 bec. the other unimolecular reactions are now slow!!
            LCR: SetOfFates([[rs4, rs5]]),
            LCRF1: SetOfFates([[rs4, rs5]]),
            LCRF2: SetOfFates([[rs4, rs5]])
        }

        cr1 = PepperReaction([rs1, rs2], [rs7],
                             'condensed',
                             rate=1.5e6,
                             memorycheck=False)
        cr2 = PepperReaction([rs2, rs3], [rs6],
                             'condensed',
                             rate=1.5e6,
                             memorycheck=False)

        # not sure how these rates were computed...
        cr1r = PepperReaction([rs7], [rs1, rs2],
                              'condensed',
                              rate=10.0,
                              memorycheck=False)
        cr2r = PepperReaction([rs6], [rs2, rs3],
                              'condensed',
                              rate=10.0,
                              memorycheck=False)
        cr3 = PepperReaction([rs1, rs6], [rs5, rs4],
                             'condensed',
                             rate=3e6 / 2,
                             memorycheck=False)
        cr4 = PepperReaction([rs3, rs7], [rs5, rs4],
                             'condensed',
                             rate=3e6 / 2,
                             memorycheck=False)

        enum = Enumerator(complexes.values(), reactions)

        enum.k_fast = 25

        #enum.enumerate() # or enum.dry_run()
        enum.dry_run()  # or enum.dry_run()

        enumRG = PepperCondensation(enum)
        enumRG.condense()

        # Works...
        self.assertEqual(enum.k_fast, enumRG.k_fast)
        self.assertEqual(sorted([rs1, rs2, rs3, rs4, rs5, rs6, rs7]),
                         sorted(enumRG.resting_sets))

        self.assertDictEqual(cplx_to_fate, enumRG.cplx_to_fate)
        self.assertEqual(sorted([cr1, cr1r, cr2, cr2r, cr3, cr4]),
                         sorted(enumRG.condensed_reactions))

        for (r1, r2) in zip(sorted([cr1, cr1r, cr2, cr2r, cr3, cr4]),
                            sorted(enumRG.condensed_reactions)):
            self.assertEqual(r1, r2)
            self.assertAlmostEqual(r1.rate, r2.rate)
    def test_zhang_cooperative_binding(self):
        complexes, reactions = read_pil("""
        # Figure 1 of David Yu Zhang, "Cooperative hybridization of oligonucleotides", JACS, 2012

        # File generated by peppercorn-v0.5.0

        # Domain Specifications 
        length d1 = 8
        length d2 = 18
        length d3 = 18
        length d4 = 8

        # Resting-set Complexes 
        C1 = d2( d3( + d4* ) ) d1* 
        L1 = d1( d2 + d2( d3( + d4* ) ) ) 
        L2 = d1( d2( + d2 d3( + d4* ) ) ) 
        Out = d2 d3 
        R1 = d2( d3( + d3 d4( + ) ) ) d1* 
        R2 = d2( d3 + d3( d4( + ) ) ) d1* 
        T1 = d1 d2 
        T2 = d3 d4 
        Waste = d1( d2( + d3( d4( + ) ) ) ) 

        # Transient Complexes 
        L1R1 = d1( d2 + d2( d3( + d3 d4( + ) ) ) ) 
        L1R2 = d1( d2 + d2( d3 + d3( d4( + ) ) ) ) 
        L2R1 = d1( d2( + d2 d3( + d3 d4( + ) ) ) ) 

        # Detailed Reactions 
        reaction [bind21         =      2.4e+06 /M/s ] C1 + T2 -> R1
        reaction [bind21         =      2.4e+06 /M/s ] L1 + T2 -> L1R1
        reaction [branch-3way    =      18.5185 /s   ] L1 -> L2
        reaction [branch-3way    =      18.5185 /s   ] L1R1 -> L1R2
        reaction [branch-3way    =      18.5185 /s   ] L1R1 -> L2R1
        reaction [branch-3way    =      18.5185 /s   ] L1R2 -> L1R1
        reaction [branch-3way    =      18.5185 /s   ] L1R2 -> Waste + Out
        reaction [bind21         =      2.4e+06 /M/s ] L2 + T2 -> L2R1
        reaction [branch-3way    =      18.5185 /s   ] L2 -> L1
        reaction [branch-3way    =      18.5185 /s   ] L2R1 -> L1R1
        reaction [branch-3way    =      18.5185 /s   ] L2R1 -> Waste + Out
        reaction [branch-3way    =      18.5185 /s   ] R1 -> R2
        reaction [branch-3way    =      18.5185 /s   ] R2 -> R1
        reaction [bind21         =      2.4e+06 /M/s ] T1 + C1 -> L1
        reaction [bind21         =      2.4e+06 /M/s ] T1 + R1 -> L1R1
        reaction [bind21         =      2.4e+06 /M/s ] T1 + R2 -> L1R2
        """)

        enum = Enumerator(complexes.values(), reactions)
        enum.k_fast = 0.01
        enum.release_cutoff = 10
        #enum.enumerate() # or enum.dry_run()
        enum.dry_run()

        enumRG = PepperCondensation(enum)
        enumRG.condense()
        """
        macrostate rC1 = [C1]
        macrostate rL2 = [L2, L1]
        macrostate rOut = [Out]
        macrostate rR1 = [R1, R2]
        macrostate rT1 = [T1]
        macrostate rT2 = [T2]
        macrostate rWaste = [Waste]

        reaction [condensed      =      2.4e+06 /M/s ] rT1 + rC1 -> rL2
        reaction [condensed      =      2.4e+06 /M/s ] rL2 + rT2 -> rWaste + rOut
        reaction [condensed      =      2.4e+06 /M/s ] rC1 + rT2 -> rR1
        reaction [condensed      =      2.4e+06 /M/s ] rT1 + rR1 -> rWaste + rOut
        reaction [condensed      =   0.00316623 /s   ] rL2 -> rT1 + rC1
        reaction [condensed      =   0.00316623 /s   ] rR1 -> rC1 + rT2
        """

        L1 = complexes['L1']
        L2 = complexes['L2']
        rL2 = PepperMacrostate([L2, L1], memorycheck=False)
        Out = complexes['Out']
        rOut = PepperMacrostate([Out], memorycheck=False)
        Waste = complexes['Waste']
        rWaste = PepperMacrostate([Waste], memorycheck=False)
        T2 = complexes['T2']
        rT2 = PepperMacrostate([T2], memorycheck=False)

        # calculated by hand...
        cr1 = PepperReaction([rL2, rT2], [rWaste, rOut],
                             'condensed',
                             rate=2.4e6,
                             memorycheck=False)

        found = False
        for r in enumRG.condensed_reactions:
            if r == cr1:
                found = True
                self.assertAlmostEqual(r.rate, cr1.rate)

        self.assertTrue(found)
    def test_condense_simple(self):
        complexes, reactions = read_pil("""
        # File generated by peppercorn-v0.5.0
        
        # Domain Specifications 
        length d1 = 15
        length t0 = 5
        
        # Resting-set Complexes 
        c1 = t0 d1 
        c2 = d1( + ) t0* 
        c4 = t0( d1( + ) ) 
        c5 = d1 
        
        # Transient Complexes 
        c3 = t0( d1 + d1( + ) ) 
        
        # Detailed Reactions 
        reaction [bind21         =      100 /M/s ] c1 + c2 -> c3
        reaction [open           =       50 /s   ] c3 -> c1 + c2
        reaction [branch-3way    =       50 /s   ] c3 -> c4 + c5
        """)

        # (rs1) c1                c4 (rs3)
        #         \              /
        #          <---> c3 ---->
        #         /              \
        # (rs2) c2                c5 (rs4)

        # RestingSet representation
        rs1 = PepperMacrostate([complexes['c1']], memorycheck=False)
        rs2 = PepperMacrostate([complexes['c2']], memorycheck=False)
        rs3 = PepperMacrostate([complexes['c4']], memorycheck=False)
        rs4 = PepperMacrostate([complexes['c5']], memorycheck=False)

        # Frozensets instead of RestingMacrostates
        fs1 = frozenset([complexes['c1']])
        fs2 = frozenset([complexes['c2']])
        fs3 = frozenset([complexes['c4']])
        fs4 = frozenset([complexes['c5']])

        cplx_to_state = {  # maps Complex to its RestingMacrostate
            complexes['c1']: rs1,
            complexes['c2']: rs2,
            complexes['c4']: rs3,
            complexes['c5']: rs4
        }

        cplx_to_fate = {  # maps Complex to its SetOfFates
            complexes['c1']: SetOfFates([[rs1]]),
            complexes['c2']: SetOfFates([[rs2]]),
            complexes['c3']: SetOfFates([[rs1, rs2], [rs3, rs4]]),
            complexes['c4']: SetOfFates([[rs3]]),
            complexes['c5']: SetOfFates([[rs4]])
        }

        cplx_to_set = {  # maps Complex to its frozenset
            complexes['c1']: fs1,
            complexes['c2']: fs2,
            complexes['c4']: fs3,
            complexes['c5']: fs4
        }

        set_to_fate = {  # maps frozenset to the RestingMacrostate
            fs1: rs1,
            fs2: rs2,
            fs3: rs3,
            fs4: rs4
        }

        cond_react = PepperReaction([rs1, rs2], [rs3, rs4],
                                    'condensed',
                                    memorycheck=False)
        cond_react.rate = 100 * (float(50) / (50 + 50))

        enum = Enumerator(complexes.values(), reactions)
        enum.dry_run()  # does not change the rates!

        enumRG = PepperCondensation(enum)
        enumRG.condense()

        self.assertEqual(sorted([rs1, rs2, rs3, rs4]),
                         sorted(enumRG.resting_sets))
        self.assertDictEqual(set_to_fate, enumRG.set_to_fate)
        self.assertDictEqual(cplx_to_fate, enumRG.cplx_to_fate)
        #self.assertDictEqual(cplx_to_set,  info['complexes_to_resting_set'])

        self.assertEqual([cond_react], enumRG.condensed_reactions)
        self.assertEqual(cond_react.rate, enumRG.condensed_reactions[0].rate)
        self.assertEqual(enumRG.condensed_reactions[0].rate, 50)