def test_read_write_grid_hdf5(self): """Test I/O functions for HDF5 format.""" filepath = pathlib.Path('grid.h5') for dim in [2, 3]: coords = [self.x, self.y, self.z][:dim] petibmpy.write_grid_hdf5(filepath, 'name', *coords) coords2 = petibmpy.read_grid_hdf5(filepath, 'name') self.assertEqual(len(coords2), len(coords)) for i in range(dim): self.assertTrue(numpy.allclose(coords2[i], coords[i])) filepath.unlink()
name = 'wx_cc' simudir = pathlib.Path(__file__).absolute().parents[1] datadir = simudir / 'output' gridpath = datadir / 'grid.h5' outdir = datadir / 'postprocessing' / name outdir.mkdir(parents=True, exist_ok=True) # Read the cell-centered grid. x, y, z = petibmpy.read_grid_hdf5(gridpath, 'p') # Read the grid of the x-component of the vorticity. grid_wx = petibmpy.read_grid_hdf5(gridpath, 'wx') # Save the grid on which is defined the Q-criterion. gridpath = outdir / 'grid.h5' petibmpy.write_grid_hdf5(gridpath, name, x, y, z) # List of time-step indices to process. timesteps = [7750, 7875, 8000, 8250, 8375, 8500, 8625, 8750, 8875] interp_args = dict(bounds_error=False, method='linear', fill_value=None) for timestep in timesteps: print('[time step {}] Computing the cell-centered x-vorticity ...' .format(timestep)) filepath = datadir / '{:0>7}.h5'.format(timestep) # Load and interpolate the x-vorticity field on the cell-centered grid. wx = petibmpy.read_field_hdf5(filepath, 'wx') wx = petibmpy.interpolate3d(wx, grid_wx, (x, y, z), **interp_args) # Save the cell-centered x-vorticity field into file. filepath = outdir / '{:0>7}.h5'.format(timestep) petibmpy.write_field_hdf5(filepath, name, wx)
import petibmpy name = 'wz' # name of the field variable # Get directories. simudir = pathlib.Path(__file__).absolute().parents[1] datadir = simudir / 'output' / 'solution' outdir = simudir / 'output' / 'postprocessing' / (name + '_avg') outdir.mkdir(parents=True, exist_ok=True) # Read 3D grid and write 2D grid. gridpath = simudir / 'output' / 'grid.h5' x, y, _ = petibmpy.read_grid_hdf5(gridpath, name) gridpath = outdir / 'grid.h5' petibmpy.write_grid_hdf5(gridpath, name + '-avg', x, y) # Get temporal parameters. filepath = simudir / 'config.yaml' with open(filepath, 'r') as infile: config = yaml.load(infile, Loader=yaml.FullLoader)['parameters'] dt = config['dt'] timesteps = [80000, 100000] # Average the scalar field along the z-direction and write field. for timestep in timesteps: print('[time step {}]'.format(timestep)) filepath = datadir / '{:0>7}.h5'.format(timestep) data = petibmpy.read_field_hdf5(filepath, name) data_avg = numpy.mean(data, axis=0) filepath = outdir / '{:0>7}.h5'.format(timestep)