def create_node_buffers(self, buffer_dimensions): nodebufs, nodebufs_mean = {}, {} for name, dims in buffer_dimensions.items(): nodebufs[name] = np.zeros((self.patches_per_node, ) + dims) nodebufs_mean[name] = np.zeros(dims) self.nodebufs = pfacets.data(mean=pfacets.data(**nodebufs_mean), **nodebufs)
def create_root_buffers2(self, buffer_dimensions): rootbufs, rootbufs_mean = {}, {} proc_based = ['a_l0_norm', 'a_l1_norm', 'a_l2_norm', 'a_variance'] for name,dims in buffer_dimensions.items(): first_dim = mpi.procs if (name in proc_based) else self.batch_size rootbufs[name] = np.zeros((first_dim,) + dims) rootbufs_mean[name] = np.zeros(dims) self.rootbufs = pfacets.data(mean=pfacets.data(**rootbufs_mean), **rootbufs)
def create_root_buffers1(self, buffer_dimensions): rootbufs, rootbufs_mean = {}, {} proc_based = list(set(buffer_dimensions.keys()) - set(['x'])) # TODO hack for name,dims in buffer_dimensions.items(): first_dim = mpi.procs if (name in proc_based) else self.batch_size rootbufs[name] = np.zeros((first_dim,) + dims) rootbufs_mean[name] = np.zeros(dims) self.rootbufs = pfacets.data(mean=pfacets.data(**rootbufs_mean), **rootbufs)
def create_root_buffers2(self, buffer_dimensions): rootbufs, rootbufs_mean = {}, {} proc_based = ['a_l0_norm', 'a_l1_norm', 'a_l2_norm', 'a_variance'] for name, dims in buffer_dimensions.items(): first_dim = mpi.procs if (name in proc_based) else self.batch_size rootbufs[name] = np.zeros((first_dim, ) + dims) rootbufs_mean[name] = np.zeros(dims) self.rootbufs = pfacets.data(mean=pfacets.data(**rootbufs_mean), **rootbufs)
def create_root_buffers1(self, buffer_dimensions): rootbufs, rootbufs_mean = {}, {} proc_based = list(set(buffer_dimensions.keys()) - set(['x'])) # TODO hack for name, dims in buffer_dimensions.items(): first_dim = mpi.procs if (name in proc_based) else self.batch_size rootbufs[name] = np.zeros((first_dim, ) + dims) rootbufs_mean[name] = np.zeros(dims) self.rootbufs = pfacets.data(mean=pfacets.data(**rootbufs_mean), **rootbufs)
def allocate_buffers(self): C, N, P, T, B, Bp = self.job.C, self.job.N, self.job.P, self.job.T, self.job.B, self.job.Bp sample_dims = { 'a': (N, P+T-1), 'x': (C, T), 'xhat': (C,T), 'dx': (C,T), 'dphi': (C,N,P), 'E': (1,), 'l1_penalty': (1,), 'a_l0_norm': (N,), 'a_l1_norm': (N,), 'a_l2_norm': (N,), 'a_variance': (N,) } nbuf_dims = pf.merge({'npats': (1,), 'phi': (C,N,P)}, { k: (Bp,) + v for (k,v) in sample_dims.items() }) rbuf_dims = pf.merge(sample_dims, {'x': (B,) + sample_dims['x'], 'npats': mpi.procs}) self.nbuf = pf.data(**{k: np.zeros(v) for (k,v) in nbuf_dims.items()}) self.rbuf = pf.data(**{k: np.zeros(v) for (k,v) in rbuf_dims.items()}) self.nbuf.npats = self.nbuf.npats.astype(int) self.rbuf.npats = self.rbuf.npats.astype(int) self.nbuf.sum = pf.data(**{'dphi': np.zeros(sample_dims['dphi'])})
def create_root_buffers1(self, buffer_dimensions): rootbufs, rootbufs_mean = {}, {} for name,dims in buffer_dimensions.items(): rootbufs[name], rootbufs_mean['name'] = None, None self.rootbufs = pfacets.data(mean=pfacets.data(**rootbufs_mean), **rootbufs)
def create_node_buffers(self, buffer_dimensions): nodebufs, nodebufs_mean = {}, {} for name,dims in buffer_dimensions.items(): nodebufs[name] = np.zeros((self.patches_per_node,) + dims) nodebufs_mean[name] = np.zeros(dims) self.nodebufs = pfacets.data(mean=pfacets.data(**nodebufs_mean), **nodebufs)
def create_root_buffers1(self, buffer_dimensions): rootbufs, rootbufs_mean = {}, {} for name, dims in buffer_dimensions.items(): rootbufs[name], rootbufs_mean['name'] = None, None self.rootbufs = pfacets.data(mean=pfacets.data(**rootbufs_mean), **rootbufs)