energystep_ecal_eq_0=energystep_ecal_eq_0, energystep_ecal_neq_0=energystep_ecal_neq_0, kind='cubic') KNNGF.saveCalib() classname = KNNGF.classname #plot 3D Training points fig = plt.figure(1, figsize=(5, 5)) usplt.plot3D_training(data1) plt.show() savefig(fig, directory, classname + "_plot3D_training.png") savefig(fig, 'img_index/', classname + "_plot3D_training.png") #plot 3D surface calibration fig = plt.figure(1, figsize=(5, 5)) usplt.plot3D_surf(KNNGF, data1) plt.show() savefig(fig, directory, classname + "_plot3D_surf.png") savefig(fig, 'img_index/', classname + "_plot3D_surf.png") #courbe de calibration pour ecal = 0 fig = plt.figure(figsize=(10, 4)) usplt.plotCalibrationCurve(KNNGF) plt.show() savefig(fig, directory, classname + "_calibration.png") savefig(fig, 'img_index/', classname + "_calibration.png") #ecalib/true in function of etrue fig = plt.figure(figsize=(10, 4)) usplt.plot_ecalib_over_etrue_functionof_etrue(KNNGF, data2) plt.show()
n_neighbors_ecal_eq_0=n_neighbors_ecal_eq_0, n_neighbors_ecal_neq_0=n_neighbors_ecal_neq_0, lim=lim) KNNGFD.saveCalib() classname = KNNGFD.classname #plot 3D Training points fig = plt.figure(1, figsize=(5, 4)) usplt.plot3D_training(data1) #plt.show() savefig(fig, directory, classname + "_plot3D_training.png") plt.close() #plot 3D surface calibration fig = plt.figure(1, figsize=(5, 4)) usplt.plot3D_surf(KNNGFD) #plt.show() savefig(fig, directory, classname + "_plot3D_surf.png") plt.close() #courbe de calibration pour ecal = 0 fig = plt.figure(figsize=(10, 4)) usplt.plotCalibrationCurve(KNNGFD) #plt.show() savefig(fig, directory, classname + "_calibration.png") plt.close() #ecalib/true in function of etrue fig = plt.figure(figsize=(10, 4)) usplt.plot_ecalib_over_etrue_functionof_etrue(KNNGFD, data2) #plt.show()
KNNGC = data1.KNNGaussianCleaning(n_neighbors_ecal_eq_0, n_neighbors_ecal_neq_0, weights, algorithm, sigma, lim, energystep, kind, cut) KNNGC.saveCalib() classname = KNNGC.classname #plot 3D Training points fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_training(data1) plt.show() savefig(fig, directory, classname + "_plot3D_training.png") #plot 3D surface calibration fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_surf(KNNGC) plt.show() savefig(fig, directory, classname + "_plot3D_surf.png") savefig(fig, directory, classname + "_plot3D_surf.eps") plt.close() #courbe de calibration pour ecal = 0 fig = plt.figure(figsize=(12, 4)) usplt.plotCalibrationCurve(KNNGC) plt.show() savefig(fig, directory, classname + "_calibration.png") plt.close() #ecalib/true in function of etrue fig = plt.figure(figsize=(12, 4)) usplt.plot_ecalib_over_etrue_functionof_etrue(KNNGC, data2)
# We create the calibration LinearRegression = data1.LinearRegression(lim_min=20, lim_max=80, lim=150) # We save the calibration LinearRegression.saveCalib() classname = LinearRegression.classname #plot 3D Training points fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_training(data1) plt.show() savefig(fig, directory, classname + "_plot3D_training.png") plt.close() #plot 3D surface calibration fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_surf(LinearRegression) plt.show() savefig(fig, directory, classname + "_plot3D_surf.png") savefig(fig, directory, classname + "_plot3D_surf.eps") plt.close() #courbe de calibration pour ecal = 0 fig = plt.figure(figsize=(12, 4)) usplt.plotCalibrationCurve(LinearRegression) plt.show() savefig(fig, directory, classname + "_calibration.png") plt.close() #ecalib/true in function of etrue fig = plt.figure(figsize=(12, 4)) usplt.plot_ecalib_over_etrue_functionof_etrue(LinearRegression, data2)
except FileNotFoundError: # We create the calibration CalibrationLego = data1.CalibrationLego(nbLego=nbLego) CalibrationLego.saveCalib() classname = CalibrationLego.classname #plot 3D Training points fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_training(data1) plt.show() savefig(fig, directory, classname + "_plot3D_training.png") plt.close() #plot 3D surface calibration fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_surf(CalibrationLego) plt.show() savefig(fig, directory, classname + "_plot3D_surf.png") savefig(fig, directory, classname + "_plot3D_surf.eps") plt.close() #courbe de calibration pour ecal = 0 fig = plt.figure(figsize=(12, 4)) usplt.plotCalibrationCurve(CalibrationLego) plt.show() savefig(fig, directory, classname + "_calibration.png") plt.close() #ecalib/true in function of etrue fig = plt.figure(figsize=(12, 4)) usplt.plot_ecalib_over_etrue_functionof_etrue(CalibrationLego, data2)
# We create the calibration LinearRegression = data1.LinearRegression(lim_min=20, lim_max=80, lim=150) # We save the calibration LinearRegression.saveCalib() classname = LinearRegression.classname #plot 3D Training points fig = plt.figure(1, figsize=(5, 5)) usplt.plot3D_training(data1) #plt.show() savefig(fig, directory, classname + "_plot3D_training.png") plt.close() #plot 3D surface calibration fig = plt.figure(1, figsize=(5, 5)) usplt.plot3D_surf(LinearRegression, data1) #plt.show() savefig(fig, directory, classname + "_plot3D_surf.png") plt.close() #courbe de calibration pour ecal = 0 fig = plt.figure(figsize=(10, 4)) usplt.plotCalibrationCurve(LinearRegression) #plt.show() savefig(fig, directory, classname + "_calibration.png") plt.close() #ecalib/true in function of etrue fig = plt.figure(figsize=(10, 4)) usplt.plot_ecalib_over_etrue_functionof_etrue(LinearRegression, data2) #plt.show()
# We create the calibration KNN = data1.KNN(n_neighbors_ecal_eq_0, n_neighbors_ecal_neq_0, weights, algorithm, sigma, lim) KNN.saveCalib() classname = KNN.classname #plot 3D Training points fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_training(data1) plt.show() savefig(fig, directory, classname + "_plot3D_training.png") plt.close() #plot 3D surface calibration fig = plt.figure(1, figsize=(6, 4)) usplt.plot3D_surf(KNN) plt.show() savefig(fig, directory, classname + "_plot3D_surf.png") savefig(fig, directory, classname + "_plot3D_surf.eps") plt.close() #courbe de calibration pour ecal = 0 fig = plt.figure(figsize=(12, 4)) usplt.plotCalibrationCurve(KNN) plt.show() savefig(fig, directory, classname + "_calibration.png") plt.close() #ecalib/true in function of etrue fig = plt.figure(figsize=(12, 4)) usplt.plot_ecalib_over_etrue_functionof_etrue(KNN, data2)