Пример #1
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("processes", type=int)
    parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--t-max", type=int, default=5)
    parser.add_argument("--replay-start-size", type=int, default=10000)
    parser.add_argument("--n-times-replay", type=int, default=4)
    parser.add_argument("--beta", type=float, default=1e-2)
    parser.add_argument("--profile", action="store_true")
    parser.add_argument("--steps", type=int, default=10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--lr", type=float, default=7e-4)
    parser.add_argument("--eval-interval", type=int, default=10**5)
    parser.add_argument("--eval-n-runs", type=int, default=10)
    parser.add_argument("--use-lstm", action="store_true")
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default="")
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.set_defaults(use_lstm=False)
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    utils.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    n_actions = gym.make(args.env).action_space.n

    input_to_hidden = nn.Sequential(
        nn.Conv2d(4, 16, 8, stride=4),
        nn.ReLU(),
        nn.Conv2d(16, 32, 4, stride=2),
        nn.ReLU(),
        nn.Flatten(),
        nn.Linear(2592, 256),
        nn.ReLU(),
    )

    head = acer.ACERDiscreteActionHead(
        pi=nn.Sequential(
            nn.Linear(256, n_actions),
            SoftmaxCategoricalHead(),
        ),
        q=nn.Sequential(
            nn.Linear(256, n_actions),
            DiscreteActionValueHead(),
        ),
    )

    if args.use_lstm:
        model = pfrl.nn.RecurrentSequential(
            input_to_hidden,
            nn.LSTM(num_layers=1, input_size=256, hidden_size=256),
            head,
        )
    else:
        model = nn.Sequential(input_to_hidden, head)

    model.apply(pfrl.initializers.init_chainer_default)

    opt = pfrl.optimizers.SharedRMSpropEpsInsideSqrt(model.parameters(),
                                                     lr=args.lr,
                                                     eps=4e-3,
                                                     alpha=0.99)

    replay_buffer = EpisodicReplayBuffer(10**6 // args.processes)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = acer.ACER(
        model,
        opt,
        t_max=args.t_max,
        gamma=0.99,
        replay_buffer=replay_buffer,
        n_times_replay=args.n_times_replay,
        replay_start_size=args.replay_start_size,
        beta=args.beta,
        phi=phi,
        max_grad_norm=40,
        recurrent=args.use_lstm,
    )

    if args.load:
        agent.load(args.load)

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_steps=None,
                                                  n_episodes=args.eval_n_runs)
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            for pg in agent.optimizer.param_groups:
                assert "lr" in pg
                pg["lr"] = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )
Пример #2
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("--processes", type=int, default=16)
    parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--t-max", type=int, default=5)
    parser.add_argument("--beta", type=float, default=1e-2)
    parser.add_argument("--profile", action="store_true")
    parser.add_argument("--steps", type=int, default=8 * 10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--lr", type=float, default=7e-4)
    parser.add_argument("--eval-interval", type=int, default=250000)
    parser.add_argument("--eval-n-steps", type=int, default=125000)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--load", type=str, default="")
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    utils.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    sample_env = make_env(0, False)
    obs_size = sample_env.observation_space.low.shape[0]
    n_actions = sample_env.action_space.n

    model = nn.Sequential(
        nn.Conv2d(obs_size, 16, 8, stride=4),
        nn.ReLU(),
        nn.Conv2d(16, 32, 4, stride=2),
        nn.ReLU(),
        nn.Flatten(),
        nn.Linear(2592, 256),
        nn.ReLU(),
        pfrl.nn.Branched(
            nn.Sequential(
                nn.Linear(256, n_actions),
                SoftmaxCategoricalHead(),
            ),
            nn.Linear(256, 1),
        ),
    )

    # SharedRMSprop is same as torch.optim.RMSprop except that it initializes
    # its state in __init__, allowing it to be moved to shared memory.
    opt = SharedRMSpropEpsInsideSqrt(model.parameters(),
                                     lr=7e-4,
                                     eps=1e-1,
                                     alpha=0.99)
    assert opt.state_dict()["state"], (
        "To share optimizer state across processes, the state must be"
        " initialized before training.")

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = a3c.A3C(
        model,
        opt,
        t_max=args.t_max,
        gamma=0.99,
        beta=args.beta,
        phi=phi,
        max_grad_norm=40.0,
    )

    if args.load_pretrained:
        raise Exception("Pretrained models are currently unsupported.")

    if args.load:
        agent.load(args.load)

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_steps=args.eval_n_steps,
                                                  n_episodes=None)
        print("n_steps: {} mean: {} median: {} stdev: {}".format(
            args.eval_n_steps,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            for pg in agent.optimizer.param_groups:
                assert "lr" in pg
                pg["lr"] = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=args.eval_n_steps,
            eval_n_episodes=None,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=True,
        )
Пример #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--env",
                        type=str,
                        default="BreakoutNoFrameskip-v4",
                        help="Gym Env ID.")
    parser.add_argument("--gpu",
                        type=int,
                        default=0,
                        help="GPU device ID. Set to -1 to use CPUs only.")
    parser.add_argument(
        "--num-envs",
        type=int,
        default=8,
        help="Number of env instances run in parallel.",
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 32)")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--steps",
                        type=int,
                        default=10**7,
                        help="Total time steps for training.")
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--lr",
                        type=float,
                        default=2.5e-4,
                        help="Learning rate.")
    parser.add_argument(
        "--eval-interval",
        type=int,
        default=100000,
        help="Interval (in timesteps) between evaluation phases.",
    )
    parser.add_argument(
        "--eval-n-runs",
        type=int,
        default=10,
        help="Number of episodes ran in an evaluation phase.",
    )
    parser.add_argument(
        "--demo",
        action="store_true",
        default=False,
        help="Run demo episodes, not training.",
    )
    parser.add_argument(
        "--load",
        type=str,
        default="",
        help=("Directory path to load a saved agent data from"
              " if it is a non-empty string."),
    )
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.add_argument(
        "--update-interval",
        type=int,
        default=128 * 8,
        help="Interval (in timesteps) between PPO iterations.",
    )
    parser.add_argument(
        "--batchsize",
        type=int,
        default=32 * 8,
        help="Size of minibatch (in timesteps).",
    )
    parser.add_argument(
        "--epochs",
        type=int,
        default=4,
        help="Number of epochs used for each PPO iteration.",
    )
    parser.add_argument(
        "--log-interval",
        type=int,
        default=10000,
        help="Interval (in timesteps) of printing logs.",
    )
    parser.add_argument(
        "--recurrent",
        action="store_true",
        default=False,
        help="Use a recurrent model. See the code for the model definition.",
    )
    parser.add_argument(
        "--flicker",
        action="store_true",
        default=False,
        help=("Use so-called flickering Atari, where each"
              " screen is blacked out with probability 0.5."),
    )
    parser.add_argument(
        "--no-frame-stack",
        action="store_true",
        default=False,
        help=
        ("Disable frame stacking so that the agent can only see the current screen."
         ),
    )
    parser.add_argument(
        "--checkpoint-frequency",
        type=int,
        default=None,
        help="Frequency at which agents are stored.",
    )
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
    assert process_seeds.max() < 2**32

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(idx, test):
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
            flicker=args.flicker,
            frame_stack=False,
        )
        env.seed(env_seed)
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    def make_batch_env(test):
        vec_env = pfrl.envs.MultiprocessVectorEnv([
            (lambda: make_env(idx, test))
            for idx, env in enumerate(range(args.num_envs))
        ])
        if not args.no_frame_stack:
            vec_env = pfrl.wrappers.VectorFrameStack(vec_env, 4)
        return vec_env

    sample_env = make_batch_env(test=False)
    print("Observation space", sample_env.observation_space)
    print("Action space", sample_env.action_space)
    n_actions = sample_env.action_space.n
    obs_n_channels = sample_env.observation_space.low.shape[0]
    del sample_env

    def lecun_init(layer, gain=1):
        if isinstance(layer, (nn.Conv2d, nn.Linear)):
            pfrl.initializers.init_lecun_normal(layer.weight, gain)
            nn.init.zeros_(layer.bias)
        else:
            pfrl.initializers.init_lecun_normal(layer.weight_ih_l0, gain)
            pfrl.initializers.init_lecun_normal(layer.weight_hh_l0, gain)
            nn.init.zeros_(layer.bias_ih_l0)
            nn.init.zeros_(layer.bias_hh_l0)
        return layer

    if args.recurrent:
        model = pfrl.nn.RecurrentSequential(
            lecun_init(nn.Conv2d(obs_n_channels, 32, 8, stride=4)),
            nn.ReLU(),
            lecun_init(nn.Conv2d(32, 64, 4, stride=2)),
            nn.ReLU(),
            lecun_init(nn.Conv2d(64, 64, 3, stride=1)),
            nn.ReLU(),
            nn.Flatten(),
            lecun_init(nn.Linear(3136, 512)),
            nn.ReLU(),
            lecun_init(nn.GRU(num_layers=1, input_size=512, hidden_size=512)),
            pfrl.nn.Branched(
                nn.Sequential(
                    lecun_init(nn.Linear(512, n_actions), 1e-2),
                    SoftmaxCategoricalHead(),
                ),
                lecun_init(nn.Linear(512, 1)),
            ),
        )
    else:
        model = nn.Sequential(
            lecun_init(nn.Conv2d(obs_n_channels, 32, 8, stride=4)),
            nn.ReLU(),
            lecun_init(nn.Conv2d(32, 64, 4, stride=2)),
            nn.ReLU(),
            lecun_init(nn.Conv2d(64, 64, 3, stride=1)),
            nn.ReLU(),
            nn.Flatten(),
            lecun_init(nn.Linear(3136, 512)),
            nn.ReLU(),
            pfrl.nn.Branched(
                nn.Sequential(
                    lecun_init(nn.Linear(512, n_actions), 1e-2),
                    SoftmaxCategoricalHead(),
                ),
                lecun_init(nn.Linear(512, 1)),
            ),
        )

    opt = torch.optim.Adam(model.parameters(), lr=args.lr, eps=1e-5)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = PPO(
        model,
        opt,
        gpu=args.gpu,
        phi=phi,
        update_interval=args.update_interval,
        minibatch_size=args.batchsize,
        epochs=args.epochs,
        clip_eps=0.1,
        clip_eps_vf=None,
        standardize_advantages=True,
        entropy_coef=1e-2,
        recurrent=args.recurrent,
        max_grad_norm=0.5,
    )
    if args.load:
        agent.load(args.load)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=make_batch_env(test=True),
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
        )
        print("n_runs: {} mean: {} median: {} stdev: {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        step_hooks = []

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            for param_group in agent.optimizer.param_groups:
                param_group["lr"] = value

        step_hooks.append(
            experiments.LinearInterpolationHook(args.steps, args.lr, 0,
                                                lr_setter))

        experiments.train_agent_batch_with_evaluation(
            agent=agent,
            env=make_batch_env(False),
            eval_env=make_batch_env(True),
            outdir=args.outdir,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            checkpoint_freq=args.checkpoint_frequency,
            eval_interval=args.eval_interval,
            log_interval=args.log_interval,
            save_best_so_far_agent=False,
            step_hooks=step_hooks,
        )