Пример #1
0
    def _test_actor_learner_training(self, gpu, steps=100000, require_success=True):

        logging.basicConfig(level=logging.DEBUG)

        test_env, successful_return = self.make_env_and_successful_return(test=True)
        agent = self.make_agent(test_env, gpu)

        # cumulative_steps init to 0
        assert agent.cumulative_steps == 0

        def make_env(process_idx, test):
            env, _ = self.make_env_and_successful_return(test=test)
            return env

        step_hook = mock.Mock()
        optimizer_step_hook = mock.Mock()

        # Train
        if steps > 0:
            (
                make_actor,
                learner,
                poller,
                exception_event,
            ) = agent.setup_actor_learner_training(
                n_actors=2,
                step_hooks=[step_hook],
                optimizer_step_hooks=[optimizer_step_hook],
            )

            poller.start()
            learner.start()
            train_agent_async(
                processes=2,
                steps=steps,
                outdir=self.tmpdir,
                eval_interval=200,
                eval_n_steps=None,
                eval_n_episodes=5,
                successful_score=successful_return,
                make_env=make_env,
                make_agent=make_actor,
                stop_event=learner.stop_event,
                exception_event=exception_event,
            )
            learner.stop()
            learner.join()
            poller.stop()
            poller.join()

        # Test

        # Because in actor-learner traininig the model can be updated between
        # evaluation and saving, it is difficult to guarantee the learned
        # model successfully passes the test.
        # Thus we only check if the training was successful.

        # As the test can finish before running all the steps,
        # we can only test the range
        assert agent.cumulative_steps > 0
        assert agent.cumulative_steps <= steps + 1

        # Unlike the non-actor-learner cases, the step_hooks and
        # optimizer_step_hooks are only called when the update happens
        # when we do a fast test, the update may not be triggered due to
        # limited amount of experience, the call_count can be 0 in such case
        assert step_hook.call_count >= 0
        assert step_hook.call_count <= steps / agent.update_interval
        assert optimizer_step_hook.call_count == step_hook.call_count

        for i, call in enumerate(step_hook.call_args_list):
            args, kwargs = call
            assert args[0] is None
            assert args[1] is agent
            assert args[2] == (i + 1) * agent.update_interval

        for i, call in enumerate(optimizer_step_hook.call_args_list):
            args, kwargs = call
            assert args[0] is None
            assert args[1] is agent
            assert args[2] == i + 1

        successful_path = os.path.join(self.tmpdir, "successful")
        finished_path = os.path.join(self.tmpdir, "{}_finish".format(steps))
        if require_success:
            assert os.path.exists(successful_path)
        else:
            assert os.path.exists(successful_path) or os.path.exists(finished_path)
Пример #2
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("--processes", type=int, default=16)
    parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--t-max", type=int, default=5)
    parser.add_argument("--beta", type=float, default=1e-2)
    parser.add_argument("--profile", action="store_true")
    parser.add_argument("--steps", type=int, default=8 * 10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--lr", type=float, default=7e-4)
    parser.add_argument("--eval-interval", type=int, default=250000)
    parser.add_argument("--eval-n-steps", type=int, default=125000)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--load", type=str, default="")
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    utils.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    sample_env = make_env(0, False)
    obs_size = sample_env.observation_space.low.shape[0]
    n_actions = sample_env.action_space.n

    model = nn.Sequential(
        nn.Conv2d(obs_size, 16, 8, stride=4),
        nn.ReLU(),
        nn.Conv2d(16, 32, 4, stride=2),
        nn.ReLU(),
        nn.Flatten(),
        nn.Linear(2592, 256),
        nn.ReLU(),
        pfrl.nn.Branched(
            nn.Sequential(
                nn.Linear(256, n_actions),
                SoftmaxCategoricalHead(),
            ),
            nn.Linear(256, 1),
        ),
    )

    # SharedRMSprop is same as torch.optim.RMSprop except that it initializes
    # its state in __init__, allowing it to be moved to shared memory.
    opt = SharedRMSpropEpsInsideSqrt(model.parameters(),
                                     lr=7e-4,
                                     eps=1e-1,
                                     alpha=0.99)
    assert opt.state_dict()["state"], (
        "To share optimizer state across processes, the state must be"
        " initialized before training.")

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = a3c.A3C(
        model,
        opt,
        t_max=args.t_max,
        gamma=0.99,
        beta=args.beta,
        phi=phi,
        max_grad_norm=40.0,
    )

    if args.load_pretrained:
        raise Exception("Pretrained models are currently unsupported.")

    if args.load:
        agent.load(args.load)

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_steps=args.eval_n_steps,
                                                  n_episodes=None)
        print("n_steps: {} mean: {} median: {} stdev: {}".format(
            args.eval_n_steps,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            for pg in agent.optimizer.param_groups:
                assert "lr" in pg
                pg["lr"] = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=args.eval_n_steps,
            eval_n_episodes=None,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=True,
        )
Пример #3
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("processes", type=int)
    parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--t-max", type=int, default=5)
    parser.add_argument("--replay-start-size", type=int, default=10000)
    parser.add_argument("--n-times-replay", type=int, default=4)
    parser.add_argument("--beta", type=float, default=1e-2)
    parser.add_argument("--profile", action="store_true")
    parser.add_argument("--steps", type=int, default=10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--lr", type=float, default=7e-4)
    parser.add_argument("--eval-interval", type=int, default=10**5)
    parser.add_argument("--eval-n-runs", type=int, default=10)
    parser.add_argument("--use-lstm", action="store_true")
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default="")
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.set_defaults(use_lstm=False)
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    utils.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    n_actions = gym.make(args.env).action_space.n

    input_to_hidden = nn.Sequential(
        nn.Conv2d(4, 16, 8, stride=4),
        nn.ReLU(),
        nn.Conv2d(16, 32, 4, stride=2),
        nn.ReLU(),
        nn.Flatten(),
        nn.Linear(2592, 256),
        nn.ReLU(),
    )

    head = acer.ACERDiscreteActionHead(
        pi=nn.Sequential(
            nn.Linear(256, n_actions),
            SoftmaxCategoricalHead(),
        ),
        q=nn.Sequential(
            nn.Linear(256, n_actions),
            DiscreteActionValueHead(),
        ),
    )

    if args.use_lstm:
        model = pfrl.nn.RecurrentSequential(
            input_to_hidden,
            nn.LSTM(num_layers=1, input_size=256, hidden_size=256),
            head,
        )
    else:
        model = nn.Sequential(input_to_hidden, head)

    model.apply(pfrl.initializers.init_chainer_default)

    opt = pfrl.optimizers.SharedRMSpropEpsInsideSqrt(model.parameters(),
                                                     lr=args.lr,
                                                     eps=4e-3,
                                                     alpha=0.99)

    replay_buffer = EpisodicReplayBuffer(10**6 // args.processes)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = acer.ACER(
        model,
        opt,
        t_max=args.t_max,
        gamma=0.99,
        replay_buffer=replay_buffer,
        n_times_replay=args.n_times_replay,
        replay_start_size=args.replay_start_size,
        beta=args.beta,
        phi=phi,
        max_grad_norm=40,
        recurrent=args.use_lstm,
    )

    if args.load:
        agent.load(args.load)

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_steps=None,
                                                  n_episodes=args.eval_n_runs)
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            for pg in agent.optimizer.param_groups:
                assert "lr" in pg
                pg["lr"] = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )
Пример #4
0
def main():
    import logging

    logging.basicConfig(level=logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--env", type=str, default="Pendulum-v0")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 32)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--final-exploration-steps", type=int, default=10**4)
    parser.add_argument("--start-epsilon", type=float, default=1.0)
    parser.add_argument("--end-epsilon", type=float, default=0.1)
    parser.add_argument("--noisy-net-sigma", type=float, default=None)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--steps", type=int, default=10**5)
    parser.add_argument("--prioritized-replay", action="store_true")
    parser.add_argument("--replay-start-size", type=int, default=1000)
    parser.add_argument("--target-update-interval", type=int, default=10**2)
    parser.add_argument("--target-update-method", type=str, default="hard")
    parser.add_argument("--soft-update-tau", type=float, default=1e-2)
    parser.add_argument("--update-interval", type=int, default=1)
    parser.add_argument("--eval-n-runs", type=int, default=100)
    parser.add_argument("--eval-interval", type=int, default=10**4)
    parser.add_argument("--n-hidden-channels", type=int, default=100)
    parser.add_argument("--n-hidden-layers", type=int, default=2)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--minibatch-size", type=int, default=None)
    parser.add_argument("--render-train", action="store_true")
    parser.add_argument("--render-eval", action="store_true")
    parser.add_argument("--monitor", action="store_true")
    parser.add_argument("--reward-scale-factor", type=float, default=1e-3)
    parser.add_argument(
        "--actor-learner",
        action="store_true",
        help="Enable asynchronous sampling with asynchronous actor(s)",
    )  # NOQA
    parser.add_argument(
        "--num-envs",
        type=int,
        default=1,
        help=("The number of environments for sampling (only effective with"
              " --actor-learner enabled)"),
    )  # NOQA
    args = parser.parse_args()

    # Set a random seed used in PFRL
    utils.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args,
                                                 args.outdir,
                                                 argv=sys.argv)
    print("Output files are saved in {}".format(args.outdir))

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
    assert process_seeds.max() < 2**32

    def clip_action_filter(a):
        return np.clip(a, action_space.low, action_space.high)

    def make_env(idx=0, test=False):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        utils.set_random_seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        if isinstance(env.action_space, spaces.Box):
            utils.env_modifiers.make_action_filtered(env, clip_action_filter)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = pfrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if (args.render_eval and test) or (args.render_train and not test):
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    timestep_limit = env.spec.max_episode_steps
    obs_space = env.observation_space
    obs_size = obs_space.low.size
    action_space = env.action_space

    if isinstance(action_space, spaces.Box):
        action_size = action_space.low.size
        # Use NAF to apply DQN to continuous action spaces
        q_func = q_functions.FCQuadraticStateQFunction(
            obs_size,
            action_size,
            n_hidden_channels=args.n_hidden_channels,
            n_hidden_layers=args.n_hidden_layers,
            action_space=action_space,
        )
        # Use the Ornstein-Uhlenbeck process for exploration
        ou_sigma = (action_space.high - action_space.low) * 0.2
        explorer = explorers.AdditiveOU(sigma=ou_sigma)
    else:
        n_actions = action_space.n
        q_func = q_functions.FCStateQFunctionWithDiscreteAction(
            obs_size,
            n_actions,
            n_hidden_channels=args.n_hidden_channels,
            n_hidden_layers=args.n_hidden_layers,
        )
        # Use epsilon-greedy for exploration
        explorer = explorers.LinearDecayEpsilonGreedy(
            args.start_epsilon,
            args.end_epsilon,
            args.final_exploration_steps,
            action_space.sample,
        )

    if args.noisy_net_sigma is not None:
        pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
        # Turn off explorer
        explorer = explorers.Greedy()

    opt = optim.Adam(q_func.parameters())

    rbuf_capacity = 5 * 10**5
    if args.minibatch_size is None:
        args.minibatch_size = 32
    if args.prioritized_replay:
        betasteps = (args.steps -
                     args.replay_start_size) // args.update_interval
        rbuf = replay_buffers.PrioritizedReplayBuffer(rbuf_capacity,
                                                      betasteps=betasteps)
    else:
        rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)

    agent = DQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=args.gamma,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        update_interval=args.update_interval,
        minibatch_size=args.minibatch_size,
        target_update_method=args.target_update_method,
        soft_update_tau=args.soft_update_tau,
    )

    if args.load:
        agent.load(args.load)

    eval_env = make_env(test=True)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))

    elif not args.actor_learner:

        print(
            "WARNING: Since https://github.com/pfnet/pfrl/pull/112 we have started"
            " setting `eval_during_episode=True` in this script, which affects the"
            " timings of evaluation phases.")

        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            eval_env=eval_env,
            train_max_episode_len=timestep_limit,
            eval_during_episode=True,
        )
    else:
        # using impala mode when given num of envs

        # When we use multiple envs, it is critical to ensure each env
        # can occupy a CPU core to get the best performance.
        # Therefore, we need to prevent potential CPU over-provision caused by
        # multi-threading in Openmp and Numpy.
        # Disable the multi-threading on Openmp and Numpy.
        os.environ["OMP_NUM_THREADS"] = "1"  # NOQA

        (
            make_actor,
            learner,
            poller,
            exception_event,
        ) = agent.setup_actor_learner_training(args.num_envs)

        poller.start()
        learner.start()

        experiments.train_agent_async(
            processes=args.num_envs,
            make_agent=make_actor,
            make_env=make_env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            stop_event=learner.stop_event,
            exception_event=exception_event,
        )

        poller.stop()
        learner.stop()
        poller.join()
        learner.join()
Пример #5
0
    def _test_actor_learner_training(self, gpu, steps=100000, require_success=True):

        logging.basicConfig(level=logging.DEBUG)

        test_env, successful_return = self.make_env_and_successful_return(test=True)
        agent = self.make_agent(test_env, gpu)

        # cumulative_steps init to 0
        assert agent.cumulative_steps == 0

        def make_env(process_idx, test):
            env, _ = self.make_env_and_successful_return(test=test)
            return env

        # Train
        if steps > 0:
            (
                make_actor,
                learner,
                poller,
                exception_event,
            ) = agent.setup_actor_learner_training(n_actors=2)

            poller.start()
            learner.start()
            train_agent_async(
                processes=2,
                steps=steps,
                outdir=self.tmpdir,
                eval_interval=200,
                eval_n_steps=None,
                eval_n_episodes=5,
                successful_score=successful_return,
                make_env=make_env,
                make_agent=make_actor,
                stop_event=learner.stop_event,
                exception_event=exception_event,
            )
            learner.stop()
            learner.join()
            poller.stop()
            poller.join()

        # Test

        # Because in actor-learner traininig the model can be updated between
        # evaluation and saving, it is difficult to guarantee the learned
        # model successfully passes the test.
        # Thus we only check if the training was successful.

        # As the test can finish before running all the steps,
        # we can only test the range
        assert agent.cumulative_steps > 0
        assert agent.cumulative_steps <= steps + 1

        successful_path = os.path.join(self.tmpdir, "successful")
        finished_path = os.path.join(self.tmpdir, "{}_finish".format(steps))
        if require_success:
            assert os.path.exists(successful_path)
        else:
            assert os.path.exists(successful_path) or os.path.exists(finished_path)