def batch_fn(self, batch_ex): # batch_ex = [ # (node, label), # (node, label), # ] # batch_node = [] batch_label = [] for batch in batch_ex: batch_node.append(batch[0]) batch_label.append(batch[1]) if len(batch_node) != self.batch_size: if self.phase == "train": return None #Skip batch_node = np.array(batch_node, dtype="int64") batch_label = np.array(batch_label, dtype="int64") subgraphs = graphsage_sample(self.graph, batch_node, self.samples) subgraphs[0].node_feat["index"] = subgraphs[ 0].reindex_to_parrent_nodes(subgraphs[0].nodes).astype(np.int64) subgraphs[0].node_feat["term_ids"] = self.term_ids[ subgraphs[0].node_feat["index"]].astype(np.int64) feed_dict = {} for i in range(self.num_layers): feed_dict.update(self.graph_wrappers[i].to_feed(subgraphs[i])) # only reindex from first subgraph sub_node_idx = subgraphs[0].reindex_from_parrent_nodes(batch_node) feed_dict["node_index"] = np.array(sub_node_idx, dtype="int64") feed_dict["node_real_index"] = np.array(batch_node, dtype="int64") feed_dict["label"] = np.array(batch_label, dtype="int64") return feed_dict
def batch_fn(self, batch_ex): # batch_ex = [ # (src, dst, neg), # (src, dst, neg), # (src, dst, neg), # ] # batch_src = [] batch_dst = [] batch_neg = [] for batch in batch_ex: batch_src.append(batch[0]) batch_dst.append(batch[1]) if len(batch) == 3: # default neg samples batch_neg.append(batch[2]) if len(batch_src) != self.batch_size: if self.phase == "train": return None #Skip if len(batch_neg) > 0: batch_neg = np.unique(np.concatenate(batch_neg)) batch_src = np.array(batch_src, dtype="int64") batch_dst = np.array(batch_dst, dtype="int64") sampled_batch_neg = alias_sample(batch_dst.shape, self.alias, self.events) if len(batch_neg) > 0: batch_neg = np.concatenate([batch_neg, sampled_batch_neg], 0) else: batch_neg = sampled_batch_neg if self.phase == "train": ignore_edges = set() else: ignore_edges = set() nodes = np.unique(np.concatenate([batch_src, batch_dst, batch_neg], 0)) subgraphs = graphsage_sample(self.graph, nodes, self.samples, ignore_edges=ignore_edges) #subgraphs[0].reindex_to_parrent_nodes(subgraphs[0].nodes) feed_dict = {} for i in range(self.num_layers): feed_dict.update(self.graph_wrappers[i].to_feed(subgraphs[i])) # only reindex from first subgraph sub_src_idx = subgraphs[0].reindex_from_parrent_nodes(batch_src) sub_dst_idx = subgraphs[0].reindex_from_parrent_nodes(batch_dst) sub_neg_idx = subgraphs[0].reindex_from_parrent_nodes(batch_neg) feed_dict["user_index"] = np.array(sub_src_idx, dtype="int64") feed_dict["item_index"] = np.array(sub_dst_idx, dtype="int64") feed_dict["neg_item_index"] = np.array(sub_neg_idx, dtype="int64") feed_dict["term_ids"] = self.term_ids[subgraphs[0].node_feat["index"]] return feed_dict
def batch_fn(self, batch_ex): batch_src = [] batch_dst = [] batch_neg = [] for batch in batch_ex: batch_src.append(batch[0]) batch_dst.append(batch[1]) if len(batch) == 3: # default neg samples batch_neg.append(batch[2]) if len(batch_src) != self.batch_size: if self.phase == "train": return None #Skip if len(batch_neg) > 0: batch_neg = np.unique(np.concatenate(batch_neg)) batch_src = np.array(batch_src, dtype="int64") batch_dst = np.array(batch_dst, dtype="int64") if self.neg_type == "batch_neg": batch_neg = batch_dst else: # TODO user define shape of neg_sample neg_shape = batch_dst.shape sampled_batch_neg = alias_sample(neg_shape, self.alias, self.events) batch_neg = np.concatenate([batch_neg, sampled_batch_neg], 0) if self.phase == "train": # TODO user define ignore edges or not #ignore_edges = np.concatenate([np.stack([batch_src, batch_dst], 1), np.stack([batch_dst, batch_src], 1)], 0) ignore_edges = set() else: ignore_edges = set() nodes = np.unique(np.concatenate([batch_src, batch_dst, batch_neg], 0)) subgraphs = graphsage_sample(self.graph, nodes, self.samples, ignore_edges=ignore_edges) subgraph = subgraphs[0] subgraphs[0].node_feat["index"] = subgraphs[ 0].reindex_to_parrent_nodes(subgraphs[0].nodes).astype(np.int64) subgraphs[0].node_feat["term_ids"] = self.term_ids[ subgraphs[0].node_feat["index"]].astype(np.int64) # only reindex from first subgraph sub_src_idx = subgraphs[0].reindex_from_parrent_nodes(batch_src) sub_dst_idx = subgraphs[0].reindex_from_parrent_nodes(batch_dst) sub_neg_idx = subgraphs[0].reindex_from_parrent_nodes(batch_neg) user_index = np.array(sub_src_idx, dtype="int64") pos_item_index = np.array(sub_dst_idx, dtype="int64") neg_item_index = np.array(sub_neg_idx, dtype="int64") user_real_index = np.array(batch_src, dtype="int64") pos_item_real_index = np.array(batch_dst, dtype="int64") num_nodes = np.array([len(subgraph.nodes)], np.int32) num_edges = np.array([len(subgraph.edges)], np.int32) edges = subgraph.edges node_feat = subgraph.node_feat edge_feat = subgraph.edge_feat # pairwise training with label 1. fake_label = np.ones_like(user_index) if self.phase == "train": return num_nodes, num_edges, edges, node_feat["index"], node_feat["term_ids"], user_index, \ pos_item_index, neg_item_index, user_real_index, pos_item_real_index, fake_label else: return num_nodes, num_edges, edges, node_feat["index"], node_feat["term_ids"], user_index, \ pos_item_index, neg_item_index, user_real_index, pos_item_real_index