def setUp(self): # It is just a moralised version of the above Bayesian network so all the results are same. Only factors # are under consideration for inference so this should be fine. self.markov_model = MarkovModel([('A', 'J'), ('R', 'J'), ('J', 'Q'), ('J', 'L'), ('G', 'L'), ('A', 'R'), ('J', 'G')]) factor_a = TabularCPD('A', 2, values=[[0.2], [0.8]]).to_factor() factor_r = TabularCPD('R', 2, values=[[0.4], [0.6]]).to_factor() factor_j = TabularCPD('J', 2, values=[[0.9, 0.6, 0.7, 0.1], [0.1, 0.4, 0.3, 0.9]], evidence=['A', 'R'], evidence_card=[2, 2]).to_factor() factor_q = TabularCPD('Q', 2, values=[[0.9, 0.2], [0.1, 0.8]], evidence=['J'], evidence_card=[2]).to_factor() factor_l = TabularCPD('L', 2, values=[[0.9, 0.45, 0.8, 0.1], [0.1, 0.55, 0.2, 0.9]], evidence=['J', 'G'], evidence_card=[2, 2]).to_factor() factor_g = TabularCPD('G', 2, [[0.6], [0.4]]).to_factor() self.markov_model.add_factors(factor_a, factor_r, factor_j, factor_q, factor_l, factor_g) self.markov_inference = VariableElimination(self.markov_model)
def setUp(self): # A test Bayesian model diff_cpd = TabularCPD('diff', 2, [[0.6], [0.4]]) intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]]) grade_cpd = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], evidence=['diff', 'intel'], evidence_card=[2, 2]) self.bayesian_model = BayesianModel() self.bayesian_model.add_nodes_from(['diff', 'intel', 'grade']) self.bayesian_model.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.bayesian_model.add_cpds(diff_cpd, intel_cpd, grade_cpd) # A test Markov model self.markov_model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) factor_ab = DiscreteFactor(['A', 'B'], [2, 3], [1, 2, 3, 4, 5, 6]) factor_cb = DiscreteFactor(['C', 'B'], [4, 3], [3, 1, 4, 5, 7, 8, 1, 3, 10, 4, 5, 6]) factor_bd = DiscreteFactor(['B', 'D'], [3, 2], [5, 7, 2, 1, 9, 3]) self.markov_model.add_factors(factor_ab, factor_cb, factor_bd) self.gibbs = GibbsSampling(self.bayesian_model)
def test_is_iequivalent(self): G = BayesianModel([('x', 'y'), ('z', 'y'), ('x', 'z'), ('w', 'y')]) self.assertRaises(TypeError, G.is_iequivalent, MarkovModel()) G1 = BayesianModel([('V', 'W'), ('W', 'X'), ('X', 'Y'), ('Z', 'Y')]) G2 = BayesianModel([('W', 'V'), ('X', 'W'), ('X', 'Y'), ('Z', 'Y')]) self.assertTrue(G1.is_iequivalent(G2)) G3 = BayesianModel([('W', 'V'), ('W', 'X'), ('Y', 'X'), ('Z', 'Y')]) self.assertFalse(G3.is_iequivalent(G2))
def setUp(self): self.maxDiff = None edges = [['family-out', 'dog-out'], ['bowel-problem', 'dog-out'], ['family-out', 'light-on'], ['dog-out', 'hear-bark']] cpds = {'bowel-problem': np.array([[0.01], [0.99]]), 'dog-out': np.array([[0.99, 0.01, 0.97, 0.03], [0.9, 0.1, 0.3, 0.7]]), 'family-out': np.array([[0.15], [0.85]]), 'hear-bark': np.array([[0.7, 0.3], [0.01, 0.99]]), 'light-on': np.array([[0.6, 0.4], [0.05, 0.95]])} states = {'bowel-problem': ['true', 'false'], 'dog-out': ['true', 'false'], 'family-out': ['true', 'false'], 'hear-bark': ['true', 'false'], 'light-on': ['true', 'false']} parents = {'bowel-problem': [], 'dog-out': ['bowel-problem', 'family-out'], 'family-out': [], 'hear-bark': ['dog-out'], 'light-on': ['family-out']} self.bayesmodel = BayesianModel(edges) tabular_cpds = [] for var, values in cpds.items(): cpd = TabularCPD(var, len(states[var]), values, evidence=parents[var], evidence_card=[len(states[evidence_var]) for evidence_var in parents[var]]) tabular_cpds.append(cpd) self.bayesmodel.add_cpds(*tabular_cpds) self.bayeswriter = UAIWriter(self.bayesmodel) edges = {('var_0', 'var_1'), ('var_0', 'var_2'), ('var_1', 'var_2')} self.markovmodel = MarkovModel(edges) tables = [(['var_0', 'var_1'], ['4.000', '2.400', '1.000', '0.000']), (['var_0', 'var_1', 'var_2'], ['2.2500', '3.2500', '3.7500', '0.0000', '0.0000', '10.0000', '1.8750', '4.0000', '3.3330', '2.0000', '2.0000', '3.4000'])] domain = {'var_1': '2', 'var_2': '3', 'var_0': '2'} factors = [] for table in tables: variables = table[0] cardinality = [int(domain[var]) for var in variables] values = list(map(float, table[1])) factor = DiscreteFactor(variables, cardinality, values) factors.append(factor) self.markovmodel.add_factors(*factors) self.markovwriter = UAIWriter(self.markovmodel)
def setUp(self): self.bayesian_model = BayesianModel([('A', 'J'), ('R', 'J'), ('J', 'Q'), ('J', 'L'), ('G', 'L')]) cpd_a = TabularCPD('A', 2, [[0.2], [0.8]]) cpd_r = TabularCPD('R', 2, [[0.4], [0.6]]) cpd_j = TabularCPD('J', 2, [[0.9, 0.6, 0.7, 0.1], [0.1, 0.4, 0.3, 0.9]], ['R', 'A'], [2, 2]) cpd_q = TabularCPD('Q', 2, [[0.9, 0.2], [0.1, 0.8]], ['J'], [2]) cpd_l = TabularCPD('L', 2, [[0.9, 0.45, 0.8, 0.1], [0.1, 0.55, 0.2, 0.9]], ['G', 'J'], [2, 2]) cpd_g = TabularCPD('G', 2, [[0.6], [0.4]]) self.bayesian_model.add_cpds(cpd_a, cpd_g, cpd_j, cpd_l, cpd_q, cpd_r) self.sampling_inference = BayesianModelSampling(self.bayesian_model) self.markov_model = MarkovModel()
def get_model(self): """ Returns an instance of Bayesian Model or Markov Model. Varibles are in the pattern var_0, var_1, var_2 where var_0 is 0th index variable, var_1 is 1st index variable. Return ------ model: an instance of Bayesian or Markov Model. Examples -------- >>> reader = UAIReader('TestUAI.uai') >>> reader.get_model() """ if self.network_type == 'BAYES': model = BayesianModel(self.edges) tabular_cpds = [] for cpd in self.tables: child_var = cpd[0] states = int(self.domain[child_var]) arr = list(map(float, cpd[1])) values = np.array(arr) values = values.reshape(states, values.size // states) tabular_cpds.append(TabularCPD(child_var, states, values)) model.add_cpds(*tabular_cpds) return model elif self.network_type == 'MARKOV': model = MarkovModel(self.edges) factors = [] for table in self.tables: variables = table[0] cardinality = [int(self.domain[var]) for var in variables] value = list(map(float, table[1])) factor = DiscreteFactor(variables=variables, cardinality=cardinality, values=value) factors.append(factor) model.add_factors(*factors) return model
def setUp(self): self.bayesian = BayesianModel([('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'e')]) a_cpd = TabularCPD('a', 2, [[0.4, 0.6]]) b_cpd = TabularCPD('b', 2, [[0.2, 0.4], [0.8, 0.6]], evidence=['a'], evidence_card=[2]) c_cpd = TabularCPD('c', 2, [[0.1, 0.2], [0.9, 0.8]], evidence=['b'], evidence_card=[2]) d_cpd = TabularCPD('d', 2, [[0.4, 0.3], [0.6, 0.7]], evidence=['c'], evidence_card=[2]) e_cpd = TabularCPD('e', 2, [[0.3, 0.2], [0.7, 0.8]], evidence=['d'], evidence_card=[2]) self.bayesian.add_cpds(a_cpd, b_cpd, c_cpd, d_cpd, e_cpd) self.markov = MarkovModel([('a', 'b'), ('b', 'd'), ('a', 'c'), ('c', 'd')]) factor_1 = DiscreteFactor(['a', 'b'], [2, 2], np.array([100, 1, 1, 100])) factor_2 = DiscreteFactor(['a', 'c'], [2, 2], np.array([40, 30, 100, 20])) factor_3 = DiscreteFactor(['b', 'd'], [2, 2], np.array([1, 100, 100, 1])) factor_4 = DiscreteFactor(['c', 'd'], [2, 2], np.array([60, 60, 40, 40])) self.markov.add_factors(factor_1, factor_2, factor_3, factor_4)
def setUp(self): self.graph = MarkovModel()
def test_class_init_with_data_nonstring(self): self.g = MarkovModel([(1, 2), (2, 3)])
def test_class_init_with_data_string(self): self.g = MarkovModel([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.g.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.g.edges()), [['a', 'b'], ['b', 'c']])