Пример #1
0
class TestDoOperator(unittest.TestCase):
    def setUp(self):
        self.graph = DAG()
        self.graph.add_edges_from([("X", "A"), ("A", "Y"), ("A", "B")])

    def test_do(self):
        dag_do_x = self.graph.do("A")
        self.assertEqual(set(dag_do_x.nodes()), set(self.graph.nodes()))
        self.assertEqual(sorted(list(dag_do_x.edges())), [("A", "B"), ("A", "Y")])
    def estimate(
        self, start=None, tabu_length=0, max_indegree=None, epsilon=1e-4, max_iter=1e6
    ):
        """
        Performs local hill climb search to estimates the `DAG` structure
        that has optimal score, according to the scoring method supplied in the constructor.
        Starts at model `start` and proceeds by step-by-step network modifications
        until a local maximum is reached. Only estimates network structure, no parametrization.

        Parameters
        ----------
        start: DAG instance
            The starting point for the local search. By default a completely disconnected network is used.

        tabu_length: int
            If provided, the last `tabu_length` graph modifications cannot be reversed
            during the search procedure. This serves to enforce a wider exploration
            of the search space. Default value: 100.

        max_indegree: int or None
            If provided and unequal None, the procedure only searches among models
            where all nodes have at most `max_indegree` parents. Defaults to None.

        epsilon: float (default: 1e-4)
            Defines the exit condition. If the improvement in score is less than `epsilon`,
            the learned model is returned.

        max_iter: int (default: 1e6)
            The maximum number of iterations allowed. Returns the learned model when the
            number of iterations is greater than `max_iter`.

        Returns
        -------
        model: `DAG` instance
            A `DAG` at a (local) score maximum.

        Examples
        --------
        >>> import pandas as pd
        >>> import numpy as np
        >>> from pgmpy.estimators import HillClimbSearch, BicScore
        >>> # create data sample with 9 random variables:
        ... data = pd.DataFrame(np.random.randint(0, 5, size=(5000, 9)), columns=list('ABCDEFGHI'))
        >>> # add 10th dependent variable
        ... data['J'] = data['A'] * data['B']
        >>> est = HillClimbSearch(data, scoring_method=BicScore(data))
        >>> best_model = est.estimate()
        >>> sorted(best_model.nodes())
        ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
        >>> best_model.edges()
        [('B', 'J'), ('A', 'J')]
        >>> # search a model with restriction on the number of parents:
        >>> est.estimate(max_indegree=1).edges()
        [('J', 'A'), ('B', 'J')]
        """
        nodes = self.state_names.keys()
        if start is None:
            start = DAG()
            start.add_nodes_from(nodes)
        elif not isinstance(start, DAG) or not set(start.nodes()) == set(nodes):
            raise ValueError(
                "'start' should be a DAG with the same variables as the data set, or 'None'."
            )

        tabu_list = []
        current_model = start

        iter_no = 0
        while iter_no <= max_iter:
            iter_no += 1

            best_score_delta = 0
            best_operation = None

            for operation, score_delta in self._legal_operations(
                current_model, tabu_list, max_indegree
            ):
                if score_delta > best_score_delta:
                    best_operation = operation
                    best_score_delta = score_delta

            if best_operation is None or best_score_delta < epsilon:
                break
            elif best_operation[0] == "+":
                current_model.add_edge(*best_operation[1])
                tabu_list = ([("-", best_operation[1])] + tabu_list)[:tabu_length]
            elif best_operation[0] == "-":
                current_model.remove_edge(*best_operation[1])
                tabu_list = ([("+", best_operation[1])] + tabu_list)[:tabu_length]
            elif best_operation[0] == "flip":
                X, Y = best_operation[1]
                current_model.remove_edge(X, Y)
                current_model.add_edge(Y, X)
                tabu_list = ([best_operation] + tabu_list)[:tabu_length]

        return current_model
Пример #3
0
class TestDAGCreation(unittest.TestCase):
    def setUp(self):
        self.graph = DAG()

    def test_class_init_without_data(self):
        self.assertIsInstance(self.graph, DAG)

    def test_class_init_with_data_string(self):
        self.graph = DAG([("a", "b"), ("b", "c")])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c"])
        self.assertListEqual(
            hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["b", "c"]]
        )

    def test_add_node_string(self):
        self.graph.add_node("a")
        self.assertListEqual(list(self.graph.nodes()), ["a"])

    def test_add_node_nonstring(self):
        self.graph.add_node(1)

    def test_add_nodes_from_string(self):
        self.graph.add_nodes_from(["a", "b", "c", "d"])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d"])

    def test_add_nodes_from_non_string(self):
        self.graph.add_nodes_from([1, 2, 3, 4])

    def test_add_node_weight(self):
        self.graph.add_node("weighted_a", 0.3)
        self.assertEqual(self.graph.nodes["weighted_a"]["weight"], 0.3)

    def test_add_nodes_from_weight(self):
        self.graph.add_nodes_from(["weighted_b", "weighted_c"], [0.5, 0.6])
        self.assertEqual(self.graph.nodes["weighted_b"]["weight"], 0.5)
        self.assertEqual(self.graph.nodes["weighted_c"]["weight"], 0.6)

        self.graph.add_nodes_from(["e", "f"])
        self.assertEqual(self.graph.nodes["e"]["weight"], None)
        self.assertEqual(self.graph.nodes["f"]["weight"], None)

    def test_add_edge_string(self):
        self.graph.add_edge("d", "e")
        self.assertListEqual(sorted(self.graph.nodes()), ["d", "e"])
        self.assertListEqual(list(self.graph.edges()), [("d", "e")])
        self.graph.add_nodes_from(["a", "b", "c"])
        self.graph.add_edge("a", "b")
        self.assertListEqual(
            hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["d", "e"]]
        )

    def test_add_edge_nonstring(self):
        self.graph.add_edge(1, 2)

    def test_add_edges_from_string(self):
        self.graph.add_edges_from([("a", "b"), ("b", "c")])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c"])
        self.assertListEqual(
            hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["b", "c"]]
        )
        self.graph.add_nodes_from(["d", "e", "f"])
        self.graph.add_edges_from([("d", "e"), ("e", "f")])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d", "e", "f"])
        self.assertListEqual(
            hf.recursive_sorted(self.graph.edges()),
            hf.recursive_sorted([("a", "b"), ("b", "c"), ("d", "e"), ("e", "f")]),
        )

    def test_add_edges_from_nonstring(self):
        self.graph.add_edges_from([(1, 2), (2, 3)])

    def test_add_edge_weight(self):
        self.graph.add_edge("a", "b", weight=0.3)
        if nx.__version__.startswith("1"):
            self.assertEqual(self.graph.edge["a"]["b"]["weight"], 0.3)
        else:
            self.assertEqual(self.graph.adj["a"]["b"]["weight"], 0.3)

    def test_add_edges_from_weight(self):
        self.graph.add_edges_from([("b", "c"), ("c", "d")], weights=[0.5, 0.6])
        if nx.__version__.startswith("1"):
            self.assertEqual(self.graph.edge["b"]["c"]["weight"], 0.5)
            self.assertEqual(self.graph.edge["c"]["d"]["weight"], 0.6)

            self.graph.add_edges_from([("e", "f")])
            self.assertEqual(self.graph.edge["e"]["f"]["weight"], None)
        else:
            self.assertEqual(self.graph.adj["b"]["c"]["weight"], 0.5)
            self.assertEqual(self.graph.adj["c"]["d"]["weight"], 0.6)

            self.graph.add_edges_from([("e", "f")])
            self.assertEqual(self.graph.adj["e"]["f"]["weight"], None)

    def test_update_node_parents_bm_constructor(self):
        self.graph = DAG([("a", "b"), ("b", "c")])
        self.assertListEqual(list(self.graph.predecessors("a")), [])
        self.assertListEqual(list(self.graph.predecessors("b")), ["a"])
        self.assertListEqual(list(self.graph.predecessors("c")), ["b"])

    def test_update_node_parents(self):
        self.graph.add_nodes_from(["a", "b", "c"])
        self.graph.add_edges_from([("a", "b"), ("b", "c")])
        self.assertListEqual(list(self.graph.predecessors("a")), [])
        self.assertListEqual(list(self.graph.predecessors("b")), ["a"])
        self.assertListEqual(list(self.graph.predecessors("c")), ["b"])

    def test_get_leaves(self):
        self.graph.add_edges_from(
            [("A", "B"), ("B", "C"), ("B", "D"), ("D", "E"), ("D", "F"), ("A", "G")]
        )
        self.assertEqual(sorted(self.graph.get_leaves()), sorted(["C", "G", "E", "F"]))

    def test_get_roots(self):
        self.graph.add_edges_from(
            [("A", "B"), ("B", "C"), ("B", "D"), ("D", "E"), ("D", "F"), ("A", "G")]
        )
        self.assertEqual(["A"], self.graph.get_roots())
        self.graph.add_edge("H", "G")
        self.assertEqual(sorted(["A", "H"]), sorted(self.graph.get_roots()))

    def test_init_with_cycle(self):
        self.assertRaises(ValueError, DAG, [("a", "a")])
        self.assertRaises(ValueError, DAG, [("a", "b"), ("b", "a")])
        self.assertRaises(ValueError, DAG, [("a", "b"), ("b", "c"), ("c", "a")])

    def tearDown(self):
        del self.graph