Пример #1
0
def train(output_file, params_file, cur_ind, model_path, config):

    from phase2_utils import (
        ReplayBuffer,
        load_image_model,
    )

    # load pre-trained model
    net = load_image_model(config['model_args']['backbone'],
                           model_path,
                           device=config['device'])

    # load CMAES parameters, cur_id is the population member id i.e. [0, pop_size-1]
    params = np.load(params_file)['params'][cur_ind]

    # overwrite weights
    di = net.state_dict()
    st = 0
    for i in range(4):

        w_key = 'location_pred.{}.1.weight'.format(i)
        b_key = 'location_pred.{}.1.bias'.format(i)

        w_shape = di[w_key].shape
        w_num = np.prod(w_shape)
        b_shape = di[b_key].shape
        b_num = np.prod(b_shape)

        w = params[st:st + w_num]
        b = params[st + w_num:st + w_num + b_num]
        st += (w_num + b_num)

        reshaped_w = np.reshape(w, w_shape)

        di[w_key] = torch.from_numpy(reshaped_w)
        di[b_key] = torch.from_numpy(b)
    net.load_state_dict(di)

    image_agent_kwargs = {'camera_args': config["agent_args"]['camera_args']}

    ret = rollout(net,
                  image_agent_kwargs=image_agent_kwargs,
                  port=config['port'],
                  seed=config['seed'])

    all_dists = []
    total_fit = ret
    all_dists.append(total_fit)
    avg_dist = np.mean(all_dists)

    print('Writing average distance..')
    with open(output_file, 'w+') as w:
        w.write(str(float(total_fit)))
    with open('%s.rew' % output_file, 'w') as w:
        for dist in all_dists:
            w.write('%f\n' % dist)
def train(config):

    import utils.bz_utils as bzu

    bzu.log.init(config['log_dir'])
    bzu.log.save_config(config)
    teacher_config = bzu.log.load_config(config['teacher_args']['model_path'])

    from phase2_utils import (CoordConverter, ReplayBuffer, LocationLoss,
                              load_birdview_model, load_image_model,
                              get_optimizer)

    criterion = LocationLoss()
    net = load_image_model(config['model_args']['backbone'],
                           config['phase1_ckpt'],
                           device=config['device'])

    teacher_net = load_birdview_model(teacher_config['model_args']['backbone'],
                                      config['teacher_args']['model_path'],
                                      device=config['device'])

    image_agent_kwargs = {'camera_args': config["agent_args"]['camera_args']}

    coord_converter = CoordConverter(**config["agent_args"]['camera_args'])

    replay_buffer = ReplayBuffer(**config["buffer_args"])

    # optimizer = get_optimizer(net.parameters(), config["optimizer_args"]["lr"])

    for episode in tqdm.tqdm(range(config['max_episode']), desc='Episode'):
        rollout(replay_buffer,
                coord_converter,
                net,
                teacher_net,
                episode,
                image_agent_kwargs=image_agent_kwargs,
                port=config['port'])
        # import pdb; pdb.set_trace()
        _train(replay_buffer, net, teacher_net, criterion, coord_converter,
               bzu.log, config, episode)
def train(result_file_path, valuation_file_path, params_file, gen, indiv_idx,
          model_path, config, carla_process):
    from phase2_utils import (
        ReplayBuffer,
        load_image_model,
    )

    # load pre-trained model
    net = load_image_model(config['model_args']['backbone'],
                           model_path,
                           device=config['device'])

    # load CMAES parameters, indiv_idx is the population member id i.e. [0, pop_size-1]
    params = np.load(params_file)['params'][indiv_idx]

    # overwrite weights
    di = net.state_dict()
    st = 0
    for i in range(4):

        w_key = 'location_pred.{}.1.weight'.format(i)
        b_key = 'location_pred.{}.1.bias'.format(i)

        w_shape = di[w_key].shape
        w_num = np.prod(w_shape)
        b_shape = di[b_key].shape
        b_num = np.prod(b_shape)

        w = params[st:st + w_num]
        b = params[st + w_num:st + w_num + b_num]
        st += (w_num + b_num)

        reshaped_w = np.reshape(w, w_shape)

        di[w_key] = torch.from_numpy(reshaped_w)
        di[b_key] = torch.from_numpy(b)
    net.load_state_dict(di)

    image_agent_kwargs = {'camera_args': config["agent_args"]['camera_args']}

    ret = rollout(net,
                  valuation_file_path,
                  indiv_idx,
                  episode_length=1000,
                  image_agent_kwargs=image_agent_kwargs,
                  port=config['port'],
                  env_seed=config['env_seed'])

    all_dists = []
    total_fit = ret
    all_dists.append(total_fit)
    avg_dist = np.mean(all_dists)

    # write to results files by appending new line using format: generation individual_ID score \n
    print('Writing to results files..')
    with open(result_file_path, 'a+') as file:
        file.write(
            str(int(gen)) + ' ' + str(int(indiv_idx)) + ' ' +
            str(float(total_fit)) + '\n')
        file.close()
    with open('%s.rew' % result_file_path, 'a+') as file:
        for dist in all_dists:
            file.write('%f %f %f\n' % (gen, indiv_idx, dist))
            file.close()