def predict_likelihood_moldx(phenotypes, phenotype_groups=None, hpo_network=None, alt2prim=None, k_phenotype_groups=1000): """ Predicts the likelihood of molecular diagnosis given a set of phenotypes. :param phenotypes: A list of phenotypes or a list of lists of phenotypes. :param phenotype_groups: <optionnal> A dictionary of phenotype to phenotype group mappings. :param hpo_network: <optional> The hpo networkx object. :param alt2prim: <optional> A dictionary of alternate phenotype ids to primary phenotype ids. (must be given if hpo_network is provided) :param k_phenotype_groups <optional> An integer that represents the number of phenotype groups to use. :return: An array of probabilities for the positive class. """ # detect if phenotypes is 1d or 2d if hpo_network is None or alt2prim is None: try: obo_file = config.get('hpo', 'obo_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO OBO file found in the configuration file. See "hpo:obo_file" parameter.' ) raise try: disease_to_phenotype_file = config.get( 'hpo', 'disease_to_phenotype_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO annotated dataset file found in the configuration file.' ' See "hpo:disease_to_phenotype_file" parameter.') raise logger.info(f'Loading HPO OBO file: {obo_file}') hpo_network, alt2prim, _ = \ generate_annotated_hpo_network(obo_file, disease_to_phenotype_file, ) if phenotype_groups is None: phenotype_groups = read_phenotype_groups() try: phenotype_groups[list(phenotype_groups)[0]][f"k{k_phenotype_groups}"] except KeyError: logger.critical( "The value for k_phenotype_groups was not valid. Please use a valid k from the phenotype_groups dictionary." ) raise encoded_phenotypes = encode_phenotypes(phenotypes, phenotype_groups, hpo_network, alt2prim, k=k_phenotype_groups) model = joblib.load(config['models']['likelihood.model']) probabilities = model.predict_proba(encoded_phenotypes) return probabilities[:, 1]
def likelihood_moldx(input_file, output_file=None, k_phenotype_groups=1000): """ :param input_file: The file path to a file containing three columns. [ID\tkey=value\thpodid,hpoid,hpoid] :param output_file: The file path to an output file containing the predicted probabilities :param k_phenotype_groups: The number of phenotype groups to use for encoding phenotypes. The CLI version of phenopy allows for one of [1000, 1500] """ try: obo_file = config.get('hpo', 'obo_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO OBO file found in the configuration file. See "hpo:obo_file" parameter.' ) sys.exit(1) try: disease_to_phenotype_file = config.get('hpo', 'disease_to_phenotype_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO annotated dataset file found in the configuration file.' ' See "hpo:disease_to_phenotype_file" parameter.') sys.exit(1) logger.info(f'Loading HPO OBO file: {obo_file}') hpo_network, alt2prim, _ = \ generate_annotated_hpo_network(obo_file, disease_to_phenotype_file, ) # parse input records input_records = parse_input(input_file, hpo_network, alt2prim) record_ids = [record["record_id"] for record in input_records] phenotypes = [record["terms"] for record in input_records] # predict likelihood of molecular diagnosis positive_probabilities = predict_likelihood_moldx( phenotypes, phenotype_groups=None, hpo_network=hpo_network, alt2prim=alt2prim, k_phenotype_groups=k_phenotype_groups, ) if output_file is None: output_file = "phenopy.likelihood_moldx.txt" try: with open(output_file, "w") as f: for sample_id, probability in zip(record_ids, positive_probabilities): f.write(f"{sample_id}\t{probability}\n") except IOError: sys.exit("Something went wrong writing the probabilities to file")
def _load_hpo_network(obo_file, terms_to_genes, annotations_count, custom_annotations_file, hpo_network_file=None): """ Load and process phenotypes to genes and obo files if we don't have a processed network already. """ # We instruct the user that they can set hpo_network_file in .phenopy/phenopy.ini # The default value is empty string, so check for that first. if hpo_network_file is None: hpo_network_file = config.get('hpo', 'hpo_network_file') if not os.path.exists(hpo_network_file): # load and process hpo network logger.info(f'Loading HPO OBO file: {obo_file}') hpo_network = load_obo(obo_file, logger=logger) hpo_network = process(hpo_network, terms_to_genes, annotations_count, custom_annotations_file, logger=logger) # save a cache of the processed network cache(hpo_network, hpo_network_file) # the default hpo_network.pickle file was found else: try: hpo_network = restore(hpo_network_file) except (FileNotFoundError, PermissionError, IsADirectoryError) as e: logger.critical( f'{hpo_network_file} is not a valid path to a pickled hpo_network file.\n' f'In your $HOME/.phenopy/phenopy.ini, please set hpo_network_file' f'=/path/to/hpo_netowrk.pickle OR leave it empty, which is the default. ' ) raise e return hpo_network
def score(input_file, output_file='-', records_file=None, annotations_file=None, custom_disease_file=None, ages_distribution_file=None, self=False, summarization_method='BMWA', scoring_method='HRSS', threads=1): """ Scores similarity of provided HPO annotated entries (see format below) against a set of HPO annotated dataset. By default scoring happens against diseases annotated by the HPO group. See https://hpo.jax.org/app/download/annotation. Phenopy also supports scoring the product of provided entries (see "--product") or scoring against a custom records dataset (see "--records-file). :param input_file: File with HPO annotated entries, one per line (see format below). :param output_file: File path where to store the results. [default: - (stdout)] :param records_file: An entity-to-phenotype annotation file in the same format as "input_file". This file, if provided, is used to score entries in the "input_file" against entries here. [default: None] :param annotations_file: An entity-to-phenotype annotation file in the same format as "input_file". This file, if provided, is used to add information content to the network. [default: None] :param custom_disease_file: entity Annotation for ranking diseases/genes :param ages_distribution_file: Phenotypes age summary stats file containing phenotype HPO id, mean_age, and std. [default: None] :param self: Score entries in the "input_file" against itself. :param summarization_method: The method used to summarize the HRSS matrix. Supported Values are best match average (BMA), best match weighted average (BMWA), and maximum (maximum). [default: BMWA] :param scoring_method: Either HRSS or Resnik :param threads: Number of parallel processes to use. [default: 1] """ try: obo_file = config.get('hpo', 'obo_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO OBO file found in the configuration file. See "hpo:obo_file" parameter.' ) sys.exit(1) if custom_disease_file is None: try: disease_to_phenotype_file = config.get( 'hpo', 'disease_to_phenotype_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO annotated dataset file found in the configuration file.' ' See "hpo:disease_to_phenotype_file" parameter.') sys.exit(1) else: logger.info( f"using custom disease annotation file: {custom_disease_file}") disease_to_phenotype_file = custom_disease_file logger.info(f'Loading HPO OBO file: {obo_file}') hpo_network, alt2prim, disease_records = \ generate_annotated_hpo_network(obo_file, disease_to_phenotype_file, annotations_file=annotations_file, ages_distribution_file=ages_distribution_file ) # parse input records input_records = parse_input(input_file, hpo_network, alt2prim) # create instance the scorer class try: scorer = Scorer(hpo_network, summarization_method=summarization_method, scoring_method=scoring_method) except ValueError as e: logger.critical(f'Failed to initialize scoring class: {e}') sys.exit(1) if self: score_records = input_records scoring_pairs = half_product(len(score_records), len(score_records)) else: if records_file: score_records = parse_input(records_file, hpo_network, alt2prim) else: score_records = disease_records scoring_pairs = itertools.product( range(len(input_records)), range(len(score_records)), ) results = scorer.score_records(input_records, score_records, scoring_pairs, threads) with open_or_stdout(output_file) as output_fh: output_fh.write('\t'.join(['#query', 'entity_id', 'score'])) output_fh.write('\n') for result in results: output_fh.write('\t'.join(str(column) for column in result)) output_fh.write('\n')
def annotate(hpo_network, phenotype_to_diseases, num_diseases_annotated, alt2prim, annotations_file=None, ages_distribution_file=None, phenotype_disease_frequencies=None): """ Cleans the HPO network. Removes non-phenotype branches of the network, and merges all synonyms into one tag. :param hpo_network: `networkx.MultiDiGraph` to clean. :param phenotype_to_diseases: Dictionary mapping HPO terms to diseases. :param num_diseases_annotated: Number of diseases with HPO annotations. :param alt2prim: The dict of alternate terms to canonical terms. :param annotations_file: A list of custom annotation files, in the same format as tests/data/test.score-long.txt :param ages: age distributions object :param phenotype_disease_frequencies: dictionary of phenotype to disease frequencies :param logger: Python `logging` logger instance. :param ages_distribution_file: Path to phenotypes ages distribution file. :return: `networkx.MultiDiGraph` """ # Before calculating information content, check for custom_annotations_file and load custom_annos = None if annotations_file is not None: custom_annos = {} for record in parse_input(annotations_file, hpo_network, alt2prim): for term_id in record['terms']: if term_id not in custom_annos: custom_annos[term_id] = [] custom_annos[term_id].append(record['record_id']) # make ages distributions ages = None if ages_distribution_file is not None: try: ages = make_age_distributions(ages_distribution_file) logger.info( f'Adding custom phenotype age distributions to HPO nodes from file: {ages_distribution_file}' ) except (FileNotFoundError, PermissionError) as e: logger.critical(e) logger.critical( f'Specified phenotype ages file could not be loaded or does not exist: {e}' ) exit(1) for node_id, data in hpo_network.nodes(data=True): # annotate with information content value hpo_network.nodes[node_id]['ic'] = calculate_information_content( node_id, hpo_network, phenotype_to_diseases, num_diseases_annotated, custom_annos, ) # annotate with phenotype age distribution hpo_network.nodes[node_id]['disease_weights'] = {} if ages is not None and node_id in ages.index: hpo_network.nodes[node_id]['age_dist'] = ages.loc[node_id]['age_dist'] # add the disease_frequency weights as attributes to the node if phenotype_disease_frequencies is not None: if node_id in phenotype_disease_frequencies: for disease_id, frequency in phenotype_disease_frequencies[node_id].items(): hpo_network.nodes[node_id]['weights']['disease_frequency'][disease_id] = frequency # annotate with depth value # hard-coding origin node for now origin = 'HP:0000001' hpo_network.nodes[node_id]['depth'] = nx.shortest_path_length( hpo_network, node_id, origin ) # clean synonyms synonyms = [] try: for synonym in data['synonym']: synonyms.append(synonym) hpo_network.nodes[node_id]['synonyms'] = re.findall(r'"(.*?)"', ','.join(synonyms)) except KeyError: # pass if no synonym tags in the node pass return hpo_network
def run_phenoseries_experiment(outdir=None, phenotypic_series_filepath=None, min_hpos=2, min_entities=4, phenoseries_fraction=1.0, scoring_method="HRSS", threads=1, omim_phenotypes_file=None, pairwise_mim_scores_file=None): if outdir is None: outdir = os.getcwd # load HPO network # data directory phenopy_data_directory = os.path.join(os.getenv("HOME"), ".phenopy/data") # files used in building the annotated HPO network obo_file = os.path.join(phenopy_data_directory, "hp.obo") disease_to_phenotype_file = os.path.join(phenopy_data_directory, "phenotype.hpoa") hpo_network, alt2prim, _ = generate_annotated_hpo_network( obo_file, disease_to_phenotype_file, ages_distribution_file=None) # read the phenotypic series file as a DataFrame psdf = pd.read_csv( phenotypic_series_filepath, sep="\t", comment="#", names=["PS", "MIM", "Phenotype"], ) # null phenotypes are actually null MIM id fields, so just drop these psdf = psdf.dropna().sample(frac=phenoseries_fraction, random_state=42) psdf.reset_index(inplace=True, drop=True) # create a dictionary for phenotypic series to list of omim ids mapping ps2mimids = {} for ps, mim_ids in psdf.groupby(["PS"])["MIM"]: # more than two mims in a ps if len(mim_ids) >= 2: ps2mimids[ps] = list(set([int(mid) for mid in mim_ids.tolist()])) # invert the ps2mimid dictionary for easy lookup of which ps a mim belongs to mim2psids = {} for mim_id, ps in psdf.groupby(["MIM"])["PS"]: mim2psids[int(mim_id)] = ps.tolist() fields_to_use = [ "text", "description", "otherFeatures", "biochemicalFeatures", "diagnosis", "clinicalFeatures", ] if omim_phenotypes_file == "": logger.info("Scraping OMIM Diseases text") mim_texts = {} for mim_id in mim2psids: mim_response = request_mimid_info(mim_id) try: mim_info = mim_response.json() except AttributeError: break mim_text = mim_info["omim"]["entryList"][0]["entry"][ "textSectionList"] all_mim_text = "" for text_section in mim_text: section_name = text_section["textSection"]["textSectionName"] if section_name in fields_to_use: # unique_section_names.add(section_name) all_mim_text += " " + text_section["textSection"][ "textSectionContent"] mim_texts[mim_id] = all_mim_text # instantiate txt2hpo's Exctractor class to perform named entity recognition extractor = Extractor(remove_negated=True, max_neighbors=3, correct_spelling=False) # loop over the MIM ids and extract hpo ids from each MIM's text fields mim_hpos = {} for mim_id in mim2psids: mim_hpos[mim_id] = extractor.hpo(mim_texts[mim_id]).hpids mimdf = pd.DataFrame() mimdf["omim_id"] = list(mim2psids.keys()) mimdf["hpo_terms"] = mimdf["omim_id"].apply( lambda mim_id: mim_hpos[mim_id]) mimdf.to_csv(os.path.join(outdir, "omim_phenotypes.txt"), index=False, sep='\t') else: logger.info("You passed an OMIM disease to phenotype file") try: mimdf = pd.read_csv(omim_phenotypes_file, sep="\t") mimdf["omim_id"] = mimdf["omim_id"].astype(int) mimdf["hpo_terms"] = mimdf["hpo_terms"].apply(literal_eval) mim_hpos = dict(zip(mimdf["omim_id"], mimdf["hpo_terms"])) except FileNotFoundError: sys.exit("Please provide a valid file path") # do we need this? # mim_hpos = {mim_id: hpos for mim_id, hpos in mim_hpos.items()} # clean up HPO ids in lists for mim_id, hpo_ids in mim_hpos.items(): mim_hpos[mim_id] = convert_and_filter_hpoids(hpo_ids, hpo_network, alt2prim) # remove entities (mims) that have less than min_hpos mims_to_remove = [] for mim_id, hpo_ids in mim_hpos.copy().items(): if len(hpo_ids) <= min_hpos: mims_to_remove.append(mim_id) # Now remove the entities (mim ids) with less than min_hpos experiment_ps2mimids = {} # remove these mims from ps for ps, mimids in ps2mimids.copy().items(): experiment_ps2mimids[ps] = [] for ps_mim_id in mimids: if ps_mim_id not in mims_to_remove: experiment_ps2mimids[ps].append(ps_mim_id) # After removing entities, make sure the series has min number of entities # get lists of mims and their PS remove_these_ps = [] for ps, mimids in experiment_ps2mimids.items(): if len(mimids) < min_entities: remove_these_ps.append(ps) for psid in remove_these_ps: del experiment_ps2mimids[psid] # Create a unique list of entity ids, for scoring later experiment_omims = set() for psid, mim_ids in experiment_ps2mimids.items(): for mim in mim_ids: experiment_omims.add(mim) experiment_omims = list(experiment_omims) # make a DataFrame for entity ids mimdf = pd.DataFrame() mimdf["omim_id"] = experiment_omims mimdf["hpo_terms"] = mimdf["omim_id"].apply( lambda mim_id: mim_hpos[mim_id]) if pairwise_mim_scores_file == "": scorer = Scorer(hpo_network, scoring_method=scoring_method) records = [{ "record_id": mim_id, "terms": convert_and_filter_hpoids(hpo_terms, hpo_network, alt2prim), "weights": {}, } for mim_id, hpo_terms in dict( zip(mimdf["omim_id"], mimdf["hpo_terms"])).items()] results = scorer.score_records(records, records, half_product(len(records), len(records)), threads=threads) pairwise_scores = pd.DataFrame( results, columns=["mimid1", "mimid2", "phenopy-score"]) # convert to square form pairwise_scores = pairwise_scores.set_index(["mimid1", "mimid2"]).unstack() # This pandas method chain fills in the missing scores of the square matrix with the values from the transpose of df. pairwise_scores = (pairwise_scores["phenopy-score"].reset_index( drop=True).fillna( pairwise_scores.T.droplevel(0).reset_index( drop=True)).set_index(pairwise_scores.index, drop=True)) # reindex with the mimdf index pairwise_scores = pairwise_scores.reindex(mimdf["omim_id"].tolist()) pairwise_scores = pairwise_scores[mimdf["omim_id"].tolist()] pd.DataFrame(pairwise_scores).to_csv(os.path.join( outdir, 'phenoseries.psim_matrix.txt'), sep='\t') else: pairwise_scores = pd.read_csv(pairwise_mim_scores_file, sep='\t') ranksdf = make_rank_dataframe( pairwise_scores.astype(float).values, mimdf, experiment_ps2mimids) ranksdf.to_csv(os.path.join(outdir, "phenoseries.rankdf.txt"), sep="\t")
def score(query_hpo_file, records_file=None, query_name='SAMPLE', obo_file=None, pheno2genes_file=None, threads=1, agg_score='BMA', no_parents=False, custom_annotations_file=None, output_file=None): """ Scores a case HPO terms against all genes associated HPO. :param query_hpo_file: File with case HPO terms, one per line. :param records_file: One record per line, tab delimited. First column record unique identifier, second column pipe separated list of HPO identifier (HP:0000001). :param query_name: Unique identifier for the query file. :param obo_file: OBO file from https://hpo.jax.org/app/download/ontology. :param pheno2genes_file: Phenotypes to genes from https://hpo.jax.org/app/download/annotation. :param threads: Number of parallel process to use. :param agg_score: The aggregation method to use for summarizing the similarity matrix between two term sets Must be one of {'BMA', 'maximum'} :param no_parents: If provided, scoring is done by only using the most informative nodes. All parent nodes are removed. :param custom_annotations_file: A custom entity-to-phenotype annotation file in the same format as tests/data/test.score-product.txt :param output_file: filepath where to store the results. """ if agg_score not in {'BMA', 'maximum', }: logger.critical( 'agg_score must be one of {BMA, maximum}.') exit(1) if obo_file is None: try: obo_file = config.get('hpo', 'obo_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO OBO file provided and no "hpo:obo_file" found in the configuration file.') exit(1) if pheno2genes_file is None: try: pheno2genes_file = config.get('hpo', 'pheno2genes_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO pheno2genes_file file provided and no "hpo:pheno2genes_file" found in the configuration file.' ) exit(1) try: with open(query_hpo_file, 'r') as case_fh: case_hpo = case_fh.read().splitlines() except (FileNotFoundError, PermissionError) as e: logger.critical(e) exit(1) # load phenotypes to genes associations terms_to_genes, genes_to_terms, annotations_count = load_p2g( pheno2genes_file, logger=logger) # load hpo network hpo_network = _load_hpo_network( obo_file, terms_to_genes, annotations_count, custom_annotations_file) # create instance the scorer class scorer = Scorer(hpo_network) # multiprocessing objects manager = Manager() lock = manager.Lock() if no_parents is True: case_hpo = remove_parents(case_hpo, hpo_network) if records_file: # score and output case hpo terms against all genes associated set of hpo terms logger.info( f'Scoring HPO terms from file: {query_hpo_file} against entities in: {records_file}') records = read_records_file(records_file, no_parents, hpo_network, logger=logger) # include the case-to-iteslf records[query_name] = case_hpo if not output_file: sys.stdout.write('\t'.join(['#query', 'entity_id', 'score'])) sys.stdout.write('\n') with Pool(threads) as p: p.starmap(scorer.score_pairs, [(records, [ (query_name, record) for record in records], lock, agg_score, i, threads) for i in range(threads)]) else: with Pool(threads) as p: scored_results = p.starmap(scorer.score_pairs, [(records, [(query_name, record) for record in records], lock, agg_score, i, threads, False) for i in range(threads)]) scored_results = [item for sublist in scored_results for item in sublist] scored_results_df = pd.DataFrame(data=scored_results, columns='#query,entity_id,score'.split(',')) scored_results_df = scored_results_df.sort_values(by='score', ascending=False) scored_results_df.to_csv(output_file, sep='\t', index=False) logger.info(f'Scoring completed') logger.info(f'Writing results to file: {output_file}') else: # score and output case hpo terms against all genes associated set of hpo terms logger.info(f'Scoring case HPO terms from file: {query_hpo_file}') # add the case terms to the genes_to_terms dict genes_to_terms[query_name] = case_hpo if not output_file: sys.stdout.write('\t'.join(['#query', 'gene', 'score'])) sys.stdout.write('\n') # iterate over each cross-product and score the pair of records with Pool(threads) as p: p.starmap(scorer.score_pairs, [(genes_to_terms, [ (query_name, gene) for gene in genes_to_terms], lock, agg_score, i, threads) for i in range(threads)]) else: with Pool(threads) as p: scored_results = p.starmap(scorer.score_pairs, [(genes_to_terms, [(query_name, gene) for gene in genes_to_terms], lock, agg_score, i, threads, False) for i in range(threads)]) scored_results = [item for sublist in scored_results for item in sublist] scored_results_df = pd.DataFrame(data=scored_results, columns='#query,gene,score'.split(',')) scored_results_df = scored_results_df.sort_values(by='score', ascending=False) scored_results_df.to_csv(output_file, sep='\t', index=False) logger.info(f'Scoring completed') logger.info(f'Writing results to file: {output_file}')
def score_product(records_file, obo_file=None, pheno2genes_file=None, threads=1, agg_score='BMA', no_parents=False, custom_annotations_file=None): """ Scores the cartesian product of HPO terms from a list of unique records (cases, genes, diseases, etc). :param records_file: One record per line, tab delimited. First column record unique identifier, second column pipe separated list of HPO identifier (HP:0000001). :param obo_file: OBO file from https://hpo.jax.org/app/download/ontology. :param pheno2genes_file: Phenotypes to genes from https://hpo.jax.org/app/download/annotation. :param threads: Multiprocessing threads to use [default: 1]. :param agg_score: The aggregation method to use for summarizing the similarity matrix between two term sets Must be one of {'BMA', 'maximum'} :param no_parents: If provided, scoring is done by only using the most informative nodes. All parent nodes are removed. :param custom_annotations_file: A custom entity-to-phenotype annotation file in the same format as tests/data/test.score-product.txt """ if agg_score not in {'BMA', 'maximum', }: logger.critical( 'agg_score must be one of {BMA, maximum}.') exit(1) if obo_file is None: try: obo_file = config.get('hpo', 'obo_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO OBO file provided and no "hpo:obo_file" found in the configuration file.') exit(1) if pheno2genes_file is None: try: pheno2genes_file = config.get('hpo', 'pheno2genes_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO pheno2genes_file file provided and no "hpo:pheno2genes_file" found in the configuration file.' ) exit(1) # load phenotypes to genes associations terms_to_genes, _, annotations_count = load_p2g( pheno2genes_file, logger=logger) # load hpo network hpo_network = _load_hpo_network( obo_file, terms_to_genes, annotations_count, custom_annotations_file) # try except records = read_records_file(records_file, no_parents, hpo_network, logger=logger) logger.info(f'Scoring product of records from file: {records_file}') # create instance the scorer class scorer = Scorer(hpo_network) # create records product generator records_product = itertools.product(records.keys(), repeat=2) # iterate over each cross-product and score the pair of records manager = Manager() lock = manager.Lock() with Pool(threads) as p: p.starmap(scorer.score_pairs, [(records, records_product, lock, agg_score, i, threads) for i in range(threads)])