Пример #1
0
    def _stagger_sample(self, box, resolution):
        """
    Samples this field on a staggered grid.
    In addition to sampling, extrapolates the field using an occupancy mask generated from the points.
        :param box: physical dimensions of the grid
        :param resolution: grid resolution
        :return: StaggeredGrid
        """
        resolution = np.array(resolution)
        valid_indices = math.to_int(math.floor(self.sample_points))
        valid_indices = math.minimum(math.maximum(0, valid_indices), resolution - 1)
        # Correct format for math.scatter
        valid_indices = batch_indices(valid_indices)

        active_mask = math.scatter(self.sample_points, valid_indices, 1, math.concat([[valid_indices.shape[0]], resolution, [1]], axis=-1), duplicates_handling='any')

        mask = math.pad(active_mask, [[0, 0]] + [[1, 1]] * self.rank + [[0, 0]], "constant")

        if isinstance(self.data, (int, float, np.ndarray)):
            values = math.zeros_like(self.sample_points) + self.data
        else:
            values = self.data
        
        result = []
        ones_1d = math.unstack(math.ones_like(values), axis=-1)[0]
        staggered_shape = [i + 1 for i in resolution]
        dx = box.size / resolution

        dims = range(len(resolution))
        for d in dims: 
            staggered_offset = math.stack([(0.5 * dx[i] * ones_1d if i == d else 0.0 * ones_1d) for i in dims], axis=-1)

            indices = math.to_int(math.floor(self.sample_points + staggered_offset))
            
            valid_indices = math.maximum(0, math.minimum(indices, resolution))
            valid_indices = batch_indices(valid_indices)

            values_d = math.expand_dims(math.unstack(values, axis=-1)[d], axis=-1)
            result.append(math.scatter(self.sample_points, valid_indices, values_d, [indices.shape[0]] + staggered_shape + [1], duplicates_handling=self.mode))

            d_slice = tuple([(slice(0, -2) if i == d else slice(1,-1)) for i in dims])
            u_slice = tuple([(slice(2, None) if i == d else slice(1,-1)) for i in dims])
            active_mask = math.minimum(mask[(slice(None),) + d_slice + (slice(None),)], active_mask)
            active_mask = math.minimum(mask[(slice(None),) + u_slice + (slice(None),)], active_mask)
        
        staggered_tensor_prep = unstack_staggered_tensor(math.concat(result, axis=-1))
        grid_values = StaggeredGrid(staggered_tensor_prep)
        # Fix values at boundary of liquids (using StaggeredGrid these might not receive a value, so we replace it with a value inside the liquid)
        grid_values, _ = extrapolate(grid_values, active_mask, voxel_distance=2)
        return grid_values
Пример #2
0
 def _grid_sample(self, box, resolution):
     """
 Samples this field on a regular grid.
     :param box: physical dimensions of the grid
     :param resolution: grid resolution
     :return: CenteredGrid
     """
     valid_indices = math.to_int(math.floor(self.sample_points))
     valid_indices = math.minimum(math.maximum(0, valid_indices), resolution - 1)
     # Correct format for math.scatter
     valid_indices = batch_indices(valid_indices)
     scattered = math.scatter(self.sample_points, valid_indices, self.data, math.concat([[valid_indices.shape[0]], resolution, [1]], axis=-1), duplicates_handling=self.mode)
     return CenteredGrid(data=scattered, box=box, extrapolation='constant', name=self.name+'_centered')