Пример #1
0
 def setUp(self):
     # Start Plasma store.
     plasma_store_name, self.p1 = plasma.start_plasma_store()
     self.plasma_client = plasma.PlasmaClient(plasma_store_name)
     # Start a local scheduler.
     scheduler_name, self.p2 = photon.start_local_scheduler(
         plasma_store_name, use_valgrind=USE_VALGRIND)
     # Connect to the scheduler.
     self.photon_client = photon.PhotonClient(scheduler_name)
Пример #2
0
    def setUp(self):
        # Start one Redis server and N pairs of (plasma, photon)
        redis_path = os.path.join(
            os.path.abspath(os.path.dirname(__file__)),
            "../../core/src/common/thirdparty/redis/src/redis-server")
        redis_module = os.path.join(
            os.path.dirname(os.path.abspath(__file__)),
            "../../core/src/common/redis_module/libray_redis_module.so")
        assert os.path.isfile(redis_path)
        assert os.path.isfile(redis_module)
        node_ip_address = "127.0.0.1"
        redis_port = new_port()
        redis_address = "{}:{}".format(node_ip_address, redis_port)
        self.redis_process = subprocess.Popen([
            redis_path, "--port",
            str(redis_port), "--loglevel", "warning", "--loadmodule",
            redis_module
        ])
        time.sleep(0.1)
        # Create a Redis client.
        self.redis_client = redis.StrictRedis(host=node_ip_address,
                                              port=redis_port)
        # Start one global scheduler.
        self.p1 = global_scheduler.start_global_scheduler(
            redis_address, use_valgrind=USE_VALGRIND)
        self.plasma_store_pids = []
        self.plasma_manager_pids = []
        self.local_scheduler_pids = []
        self.plasma_clients = []
        self.photon_clients = []

        for i in range(NUM_CLUSTER_NODES):
            # Start the Plasma store. Plasma store name is randomly generated.
            plasma_store_name, p2 = plasma.start_plasma_store()
            self.plasma_store_pids.append(p2)
            # Start the Plasma manager.
            # Assumption: Plasma manager name and port are randomly generated by the plasma module.
            plasma_manager_name, p3, plasma_manager_port = plasma.start_plasma_manager(
                plasma_store_name, redis_address)
            self.plasma_manager_pids.append(p3)
            plasma_address = "{}:{}".format(node_ip_address,
                                            plasma_manager_port)
            plasma_client = plasma.PlasmaClient(plasma_store_name,
                                                plasma_manager_name)
            self.plasma_clients.append(plasma_client)
            # Start the local scheduler.
            local_scheduler_name, p4 = photon.start_local_scheduler(
                plasma_store_name,
                plasma_manager_name=plasma_manager_name,
                plasma_address=plasma_address,
                redis_address=redis_address,
                static_resource_list=[10, 0])
            # Connect to the scheduler.
            photon_client = photon.PhotonClient(local_scheduler_name,
                                                NIL_ACTOR_ID)
            self.photon_clients.append(photon_client)
            self.local_scheduler_pids.append(p4)
Пример #3
0
def start_local_scheduler(redis_address,
                          node_ip_address,
                          plasma_store_name,
                          plasma_manager_name,
                          worker_path,
                          plasma_address=None,
                          cleanup=True,
                          redirect_output=False,
                          num_cpus=None,
                          num_gpus=None,
                          num_workers=0):
  """Start a local scheduler process.

  Args:
    redis_address (str): The address of the Redis instance.
    node_ip_address (str): The IP address of the node that this local scheduler
      is running on.
    plasma_store_name (str): The name of the plasma store socket to connect to.
    plasma_manager_name (str): The name of the plasma manager socket to connect
      to.
    worker_path (str): The path of the script to use when the local scheduler
      starts up new workers.
    cleanup (bool): True if using Ray in local mode. If cleanup is true, then
      this process will be killed by serices.cleanup() when the Python process
      that imported services exits.
    redirect_output (bool): True if stdout and stderr should be redirected to
      /dev/null.
    num_cpus: The number of CPUs the local scheduler should be configured with.
    num_gpus: The number of GPUs the local scheduler should be configured with.
    num_workers (int): The number of workers that the local scheduler should
      start.

  Return:
    The name of the local scheduler socket.
  """
  if num_cpus is None:
    # By default, use the number of hardware execution threads for the number of
    # cores.
    num_cpus = multiprocessing.cpu_count()
  if num_gpus is None:
    # By default, assume this node has no GPUs.
    num_gpus = 0
  local_scheduler_name, p = photon.start_local_scheduler(plasma_store_name,
                                                         plasma_manager_name,
                                                         worker_path=worker_path,
                                                         node_ip_address=node_ip_address,
                                                         redis_address=redis_address,
                                                         plasma_address=plasma_address,
                                                         use_profiler=RUN_PHOTON_PROFILER,
                                                         redirect_output=redirect_output,
                                                         static_resource_list=[num_cpus, num_gpus],
                                                         num_workers=num_workers)
  if cleanup:
    all_processes[PROCESS_TYPE_LOCAL_SCHEDULER].append(p)
  return local_scheduler_name
Пример #4
0
 def setUp(self):
   # Start a Redis server.
   redis_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "../../common/thirdparty/redis/src/redis-server")
   node_ip_address = "127.0.0.1"
   redis_port = new_port()
   redis_address = "{}:{}".format(node_ip_address, redis_port)
   self.redis_process = subprocess.Popen([redis_path, "--port", str(redis_port), "--loglevel", "warning"])
   time.sleep(0.1)
   # Create a Redis client.
   self.redis_client = redis.StrictRedis(host=node_ip_address, port=redis_port)
   # Start the global scheduler.
   self.p1 = global_scheduler.start_global_scheduler(redis_address, USE_VALGRIND)
   # Start the Plasma store.
   plasma_store_name, self.p2 = plasma.start_plasma_store()
   # Start the local scheduler.
   local_scheduler_name, self.p3 = photon.start_local_scheduler(plasma_store_name, redis_address=redis_address)
   # Connect to the scheduler.
   self.photon_client = photon.PhotonClient(local_scheduler_name)
Пример #5
0
def start_local_scheduler(redis_address, plasma_store_name, cleanup=True):
    """Start a local scheduler process.

  Args:
    redis_address (str): The address of the Redis instance.
    plasma_store_name (str): The name of the plasma store socket to connect to.
    cleanup (bool): True if using Ray in local mode. If cleanup is true, then
      this process will be killed by serices.cleanup() when the Python process
      that imported services exits.

  Return:
    The name of the local scheduler socket.
  """
    local_scheduler_name, p = photon.start_local_scheduler(
        plasma_store_name,
        redis_address=redis_address,
        use_profiler=RUN_PHOTON_PROFILER)
    if cleanup:
        all_processes.append(p)
    return local_scheduler_name
Пример #6
0
def start_local_scheduler(redis_address,
                          node_ip_address,
                          plasma_store_name,
                          plasma_manager_name,
                          worker_path,
                          plasma_address=None,
                          cleanup=True,
                          redirect_output=False):
    """Start a local scheduler process.

  Args:
    redis_address (str): The address of the Redis instance.
    node_ip_address (str): The IP address of the node that this local scheduler
      is running on.
    plasma_store_name (str): The name of the plasma store socket to connect to.
    plasma_manager_name (str): The name of the plasma manager socket to connect
      to.
    worker_path (str): The path of the script to use when the local scheduler
      starts up new workers.
    cleanup (bool): True if using Ray in local mode. If cleanup is true, then
      this process will be killed by serices.cleanup() when the Python process
      that imported services exits.
    redirect_output (bool): True if stdout and stderr should be redirected to
      /dev/null.

  Return:
    The name of the local scheduler socket.
  """
    local_scheduler_name, p = photon.start_local_scheduler(
        plasma_store_name,
        plasma_manager_name,
        worker_path=worker_path,
        node_ip_address=node_ip_address,
        redis_address=redis_address,
        plasma_address=plasma_address,
        use_profiler=RUN_PHOTON_PROFILER,
        redirect_output=redirect_output)
    if cleanup:
        all_processes[PROCESS_TYPE_LOCAL_SCHEDULER].append(p)
    return local_scheduler_name