Пример #1
0
    def _calculate_results(
            permutation_id,
            save_to_db=True,
            mongodb_path="mongodb://trap-umbriel:27017/photon_results"):

        logger.info("Calculating permutation test results")
        try:
            mother_permutation = PermutationTest.find_reference(
                mongodb_path, permutation_id)
            # mother_permutation = MDBHyperpipe.objects.raw({'permutation_id': PermutationTest.get_mother_permutation_id(permutation_id),
            #                                                'computation_completed': True}).first()

        except DoesNotExist:
            return None
        else:
            all_permutations = list(
                MDBHyperpipe.objects.raw({
                    'permutation_id': permutation_id,
                    'computation_completed': True
                }).project({'metrics_test': 1}))
            # all_permutations = MDBHyperpipe.objects.raw({'permutation_id': permutation_id,
            #                                              'computation_completed': True}).only('metrics_test')
            number_of_permutations = len(all_permutations)

            if number_of_permutations == 0:
                number_of_permutations = 1

            true_performances = dict([(m.metric_name, m.value)
                                      for m in mother_permutation.metrics_test
                                      if m.operation == "FoldOperations.MEAN"])

            perm_performances = dict()
            metric_list = list(
                set([m.metric_name for m in mother_permutation.metrics_test]))
            metrics = PermutationTest.manage_metrics(
                metric_list, None,
                mother_permutation.hyperpipe_info.best_config_metric)

            for _, metric in metrics.items():
                perm_performances[metric["name"]] = [
                    m.value for i in all_permutations for m in i.metrics_test
                    if m.metric_name == metric["name"]
                    and m.operation == "FoldOperations.MEAN"
                ]

            # Calculate p-value
            p = PermutationTest.calculate_p(
                true_performance=true_performances,
                perm_performances=perm_performances,
                metrics=metrics,
                n_perms=number_of_permutations)
            p_text = dict()
            for _, metric in metrics.items():
                if p[metric['name']] == 0:
                    p_text[metric['name']] = "p < {}".format(
                        str(1 / number_of_permutations))
                else:
                    p_text[metric['name']] = "p = {}".format(p[metric['name']])

            # Print results
            logger.clean_info("""
            Done with permutations...

            Results Permutation test
            ===============================================
            """)
            for _, metric in metrics.items():
                logger.clean_info("""
                    Metric: {}
                    True Performance: {}
                    p Value: {}

                """.format(metric['name'], true_performances[metric['name']],
                           p_text[metric['name']]))

            if save_to_db:
                # Write results to results object
                if mother_permutation.permutation_test is None:
                    perm_results = MDBPermutationResults(
                        n_perms=number_of_permutations)
                else:
                    perm_results = mother_permutation.permutation_test
                perm_results.n_perms_done = number_of_permutations
                results_all_metrics = list()
                for _, metric in metrics.items():
                    perm_metrics = MDBPermutationMetrics(
                        metric_name=metric['name'],
                        p_value=p[metric['name']],
                        metric_value=true_performances[metric['name']])
                    perm_metrics.values_permutations = perm_performances[
                        metric['name']]
                    results_all_metrics.append(perm_metrics)
                perm_results.metrics = results_all_metrics
                mother_permutation.permutation_test = perm_results
                mother_permutation.save()

            if mother_permutation.permutation_test is not None:
                n_perms = mother_permutation.permutation_test.n_perms
            else:
                # we guess?
                n_perms = 1000

            result = PermutationTest.PermutationResult(true_performances,
                                                       perm_performances, p,
                                                       number_of_permutations,
                                                       n_perms)

            return result
Пример #2
0
    def fit(self, X, y, **kwargs):
        """
        Iterates over cross-validation folds and trains the pipeline, then uses it for predictions.
        Calculates metrics per fold and averages them over fold.
        :param X: Training and test data
        :param y: Training and test targets
        :returns: configuration class for result tree that monitors training and test performance
        """

        # needed for testing Timeboxed Random Grid Search
        # time.sleep(35)

        config_item = MDBConfig()
        config_item.config_dict = self.params
        config_item.inner_folds = []
        config_item.metrics_test = []
        config_item.metrics_train = []
        config_item.computation_start_time = datetime.datetime.now()

        try:
            # do inner cv
            for idx, (inner_fold_id, inner_fold) in enumerate(
                    self.cross_validation_infos.inner_folds[
                        self.outer_fold_id].items()):

                train, test = inner_fold.train_indices, inner_fold.test_indices

                # split kwargs according to cross validation
                train_X, train_y, kwargs_cv_train = PhotonDataHelper.split_data(
                    X, y, kwargs, indices=train)
                test_X, test_y, kwargs_cv_test = PhotonDataHelper.split_data(
                    X, y, kwargs, indices=test)

                new_pipe = self.pipe()
                if self.cache_folder is not None and self.cache_updater is not None:
                    self.cache_updater(new_pipe, self.cache_folder,
                                       inner_fold_id)

                if not config_item.human_readable_config:
                    config_item.human_readable_config = PhotonPrintHelper.config_to_human_readable_dict(
                        new_pipe, self.params)
                    logger.clean_info(
                        json.dumps(config_item.human_readable_config,
                                   indent=4,
                                   sort_keys=True))

                job_data = InnerFoldManager.InnerCVJob(
                    pipe=new_pipe,
                    config=dict(self.params),
                    metrics=self.optimization_infos.metrics,
                    callbacks=self.optimization_constraints,
                    train_data=InnerFoldManager.JobData(
                        train_X, train_y, train, kwargs_cv_train),
                    test_data=InnerFoldManager.JobData(test_X, test_y, test,
                                                       kwargs_cv_test),
                )

                # only for unparallel processing
                # inform children in which inner fold we are
                # self.pipe.distribute_cv_info_to_hyperpipe_children(inner_fold_counter=fold_cnt)
                # self.mother_inner_fold_handle(fold_cnt)

                # --> write that output in InnerFoldManager!
                # logger.debug(config_item.human_readable_config)
                fold_nr = idx + 1
                logger.debug("calculating inner fold " + str(fold_nr) + "...")

                curr_test_fold, curr_train_fold = InnerFoldManager.fit_and_score(
                    job_data)
                logger.debug("Performance inner fold " + str(fold_nr))
                print_double_metrics(
                    curr_train_fold.metrics,
                    curr_test_fold.metrics,
                    photon_system_log=False,
                )

                durations = job_data.pipe.time_monitor

                self.update_config_item_with_inner_fold(
                    config_item=config_item,
                    fold_cnt=fold_nr,
                    curr_train_fold=curr_train_fold,
                    curr_test_fold=curr_test_fold,
                    time_monitor=durations,
                    feature_importances=new_pipe.feature_importances_,
                )

                if isinstance(self.optimization_constraints, list):
                    break_cv = 0
                    for cf in self.optimization_constraints:
                        if not cf.shall_continue(config_item):
                            logger.info(
                                "Skipped further cross validation after fold "
                                + str(fold_nr) +
                                " due to performance constraints in " +
                                cf.metric)
                            break_cv += 1
                            break
                    if break_cv > 0:
                        break
                elif self.optimization_constraints is not None:
                    if not self.optimization_constraints.shall_continue(
                            config_item):
                        logger.info(
                            "Skipped further cross validation after fold " +
                            str(fold_nr) +
                            " due to performance constraints in " + cf.metric)
                        break

            InnerFoldManager.process_fit_results(
                config_item,
                self.cross_validation_infos.calculate_metrics_across_folds,
                self.cross_validation_infos.calculate_metrics_per_fold,
                self.optimization_infos.metrics,
            )

        except Exception as e:
            if self.raise_error:
                raise e
            logger.error(e)
            logger.error(traceback.format_exc())
            traceback.print_exc()
            if not isinstance(e, Warning):
                config_item.config_failed = True
            config_item.config_error = str(e)
            warnings.warn("One test iteration of pipeline failed with error")

        logger.debug("...done with")
        logger.debug(
            json.dumps(config_item.human_readable_config,
                       indent=4,
                       sort_keys=True))

        config_item.computation_end_time = datetime.datetime.now()
        return config_item
Пример #3
0
    def fit(self, X, y=None, **kwargs):
        logger.photon_system_log('')
        logger.photon_system_log(
            '***************************************************************************************************************'
        )
        logger.photon_system_log('Outer Cross validation Fold {}'.format(
            self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr))
        logger.photon_system_log(
            '***************************************************************************************************************'
        )

        self._prepare_data(X, y, **kwargs)
        self._fit_dummy()
        self._generate_inner_folds()
        self._prepare_optimization()

        outer_fold_fit_start_time = datetime.datetime.now()
        self.best_metric_yet = None
        self.tested_config_counter = 0

        # distribute number of folds to encapsulated child hyperpipes
        # self.__distribute_cv_info_to_hyperpipe_children(num_of_folds=num_folds,
        #                                                 outer_fold_counter=outer_fold_counter)

        if self.cross_validaton_info.calculate_metrics_per_fold:
            self.fold_operation = FoldOperations.MEAN
        else:
            self.fold_operation = FoldOperations.RAW

        self.max_nr_of_configs = ''
        if hasattr(self.optimizer, 'n_configurations'):
            self.max_nr_of_configs = str(self.optimizer.n_configurations)

        if isinstance(self.optimizer, PhotonMasterOptimizer):
            self.optimizer.optimize()
        else:
            # do the optimizing
            for current_config in self.optimizer.ask:
                self.objective_function(current_config)

        logger.clean_info(
            '---------------------------------------------------------------------------------------------------------------'
        )
        logger.info(
            'Hyperparameter Optimization finished. Now finding best configuration .... '
        )
        print(self.tested_config_counter)
        # now go on with the best config found
        if self.tested_config_counter > 0:
            best_config_outer_fold = self.optimization_info.get_optimum_config(
                self.result_object.tested_config_list, self.fold_operation)

            if not best_config_outer_fold:
                raise Exception("No best config was found!")

            # ... and create optimal pipeline
            optimum_pipe = self.copy_pipe_fnc()
            if self.cache_updater is not None:
                self.cache_updater(optimum_pipe, self.cache_folder,
                                   "fixed_fold_id")
            optimum_pipe.caching = False
            # set self to best config
            optimum_pipe.set_params(**best_config_outer_fold.config_dict)

            # Todo: set all children to best config and inform to NOT optimize again, ONLY fit
            # for child_name, child_config in best_config_outer_fold_mdb.children_config_dict.items():
            #     if child_config:
            #         # in case we have a pipeline stacking we need to identify the particular subhyperpipe
            #         splitted_name = child_name.split('__')
            #         if len(splitted_name) > 1:
            #             stacking_element = self.optimum_pipe.named_steps[splitted_name[0]]
            #             pipe_element = stacking_element.elements[splitted_name[1]]
            #         else:
            #             pipe_element = self.optimum_pipe.named_steps[child_name]
            #         pipe_element.set_params(**child_config)
            #         pipe_element.is_final_fit = True

            # self.__distribute_cv_info_to_hyperpipe_children(reset=True)

            logger.debug(
                'Fitting model with best configuration of outer fold...')
            optimum_pipe.fit(self._validation_X, self._validation_y,
                             **self._validation_kwargs)

            self.result_object.best_config = best_config_outer_fold

            # save test performance
            best_config_performance_mdb = MDBInnerFold()
            best_config_performance_mdb.fold_nr = -99
            best_config_performance_mdb.number_samples_training = self._validation_y.shape[
                0]
            best_config_performance_mdb.number_samples_validation = self._test_y.shape[
                0]
            best_config_performance_mdb.feature_importances = optimum_pipe.feature_importances_

            if self.cross_validaton_info.eval_final_performance:
                # Todo: generate mean and std over outer folds as well. move this items to the top
                logger.info(
                    'Calculating best model performance on test set...')

                logger.debug('...scoring test data')
                test_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._test_X,
                    self._test_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id].test_indices,
                    metrics=self.optimization_info.metrics,
                    **self._test_kwargs)

                logger.debug('... scoring training data')

                train_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._validation_X,
                    self._validation_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id].train_indices,
                    metrics=self.optimization_info.metrics,
                    training=True,
                    **self._validation_kwargs)

                best_config_performance_mdb.training = train_score_mdb
                best_config_performance_mdb.validation = test_score_mdb

                print_double_metrics(train_score_mdb.metrics,
                                     test_score_mdb.metrics)
            else:

                def _copy_inner_fold_means(metric_dict):
                    # We copy all mean values from validation to the best config
                    # training
                    train_item_metrics = {}
                    for m in metric_dict:
                        if m.operation == str(self.fold_operation):
                            train_item_metrics[m.metric_name] = m.value
                    train_item = MDBScoreInformation()
                    train_item.metrics_copied_from_inner = True
                    train_item.metrics = train_item_metrics
                    return train_item

                # training
                best_config_performance_mdb.training = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_train)
                # validation
                best_config_performance_mdb.validation = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_test)

            # write best config performance to best config item
            self.result_object.best_config.best_config_score = best_config_performance_mdb

        logger.info('Computations in outer fold {} took {} minutes.'.format(
            self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr,
            (datetime.datetime.now() -
             outer_fold_fit_start_time).total_seconds() / 60))
Пример #4
0
    def objective_function(self, current_config):
        if current_config is None:
            return
        logger.clean_info(
            '---------------------------------------------------------------------------------------------------------------'
        )
        self.tested_config_counter += 1

        if hasattr(self.optimizer, 'ask_for_pipe'):
            pipe_ctor = self.optimizer.ask_for_pipe()
        else:
            pipe_ctor = self.copy_pipe_fnc

        # self.__distribute_cv_info_to_hyperpipe_children(reset=True, config_counter=tested_config_counter)

        hp = InnerFoldManager(pipe_ctor,
                              current_config,
                              self.optimization_info,
                              self.cross_validaton_info,
                              self.outer_fold_id,
                              self.constraint_objects,
                              cache_folder=self.cache_folder,
                              cache_updater=self.cache_updater)

        # Test the configuration cross validated by inner_cv object
        current_config_mdb = hp.fit(self._validation_X, self._validation_y,
                                    **self._validation_kwargs)
        current_config_mdb.config_nr = self.tested_config_counter

        if not current_config_mdb.config_failed:
            metric_train = MDBHelper.get_metric(
                current_config_mdb, self.fold_operation,
                self.optimization_info.best_config_metric)
            metric_test = MDBHelper.get_metric(
                current_config_mdb,
                self.fold_operation,
                self.optimization_info.best_config_metric,
                train=False)

            if metric_train is None or metric_test is None:
                raise Exception(
                    "Config did not fail, but did not get any metrics either....!!?"
                )
            config_performance = (metric_train, metric_test)
            if self.best_metric_yet is None:
                self.best_metric_yet = config_performance
                self.current_best_config = current_config_mdb
            else:
                # check if we have the next superstar around that exceeds any old performance
                if self.optimization_info.maximize_metric:
                    if metric_test > self.best_metric_yet[1]:
                        self.best_metric_yet = config_performance
                        self.current_best_config.save_memory()
                        self.current_best_config = current_config_mdb
                    else:
                        current_config_mdb.save_memory()
                else:
                    if metric_test < self.best_metric_yet[1]:
                        self.best_metric_yet = config_performance
                        self.current_best_config.save_memory()
                        self.current_best_config = current_config_mdb
                    else:
                        current_config_mdb.save_memory()

            # Print Result for config
            computation_duration = current_config_mdb.computation_end_time - current_config_mdb.computation_start_time
            logger.info('Computed configuration ' +
                        str(self.tested_config_counter) + "/" +
                        self.max_nr_of_configs + " in " +
                        str(computation_duration))
            logger.info("Performance:             " +
                        self.optimization_info.best_config_metric +
                        " - Train: " + "%.4f" % config_performance[0] +
                        ", Validation: " + "%.4f" % config_performance[1])
            logger.info("Best Performance So Far: " +
                        self.optimization_info.best_config_metric +
                        " - Train: " + "%.4f" % self.best_metric_yet[0] +
                        ", Validation: " + "%.4f" % self.best_metric_yet[1])
        else:
            config_performance = (-1, -1)
            # Print Result for config
            logger.debug('...failed:')
            logger.error(current_config_mdb.config_error)

        # add config to result tree
        self.result_object.tested_config_list.append(current_config_mdb)

        # 3. inform optimizer about performance
        logger.debug(
            "Telling hyperparameter optimizer about recent performance.")
        if isinstance(self.optimizer, PhotonSlaveOptimizer):
            self.optimizer.tell(current_config, config_performance)
        logger.debug("Asking hyperparameter optimizer for new config.")

        if self.optimization_info.maximize_metric:
            return 1 - config_performance[1]
        else:
            return config_performance[1]
Пример #5
0
    def fit(self, X, y=None, **kwargs):
        logger.photon_system_log("")
        logger.photon_system_log(
            "********************************************************"
        ) 
        logger.photon_system_log(
            "Outer Cross validation Fold {}".format(
                self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr
            )
        )
        logger.photon_system_log(
            "********************************************************"
        )

        self._prepare_data(X, y, **kwargs)
        self._fit_dummy()
        self._generate_inner_folds()
        self._prepare_optimization()

        outer_fold_fit_start_time = datetime.datetime.now()
        best_metric_yet = None
        tested_config_counter = 0

        # distribute number of folds to encapsulated child hyperpipes
        # self.__distribute_cv_info_to_hyperpipe_children(num_of_folds=num_folds,
        #                                                 outer_fold_counter=outer_fold_counter)

        if self.cross_validaton_info.calculate_metrics_per_fold:
            fold_operation = FoldOperations.MEAN
        else:
            fold_operation = FoldOperations.RAW

        max_nr_of_configs = ""
        if hasattr(self.optimizer, "n_configurations"):
            max_nr_of_configs = str(self.optimizer.n_configurations)

        # do the optimizing1
        for current_config in self.optimizer.ask:
            if current_config is None:
                continue
            logger.clean_info(
                "---------------------------------------------------------------------------------------------------------------"
            )
            tested_config_counter += 1

            if hasattr(self.optimizer, "ask_for_pipe"):
                pipe_ctor = self.optimizer.ask_for_pipe()
            else:
                pipe_ctor = self.copy_pipe_fnc

            # self.__distribute_cv_info_to_hyperpipe_children(reset=True, config_counter=tested_config_counter)

            hp = InnerFoldManager(
                pipe_ctor,
                current_config,
                self.optimization_info,
                self.cross_validaton_info,
                self.outer_fold_id,
                self.constraint_objects,
                cache_folder=self.cache_folder,
                cache_updater=self.cache_updater,
            )

            # Test the configuration cross validated by inner_cv object
            current_config_mdb = hp.fit(
                self._validation_X, self._validation_y, **self._validation_kwargs
            )
            current_config_mdb.config_nr = tested_config_counter

            if not current_config_mdb.config_failed:
                metric_train = MDBHelper.get_metric(
                    current_config_mdb,
                    fold_operation,
                    self.optimization_info.best_config_metric,
                )
                metric_test = MDBHelper.get_metric(
                    current_config_mdb,
                    fold_operation,
                    self.optimization_info.best_config_metric,
                    train=False,
                )

                if metric_train is None or metric_test is None:
                    raise Exception(
                        "Config did not fail, but did not get any metrics either....!!?"
                    )
                config_performance = (metric_train, metric_test)
                if best_metric_yet is None:
                    best_metric_yet = config_performance
                    self.current_best_config = current_config_mdb
                else:
                    # check if we have the next superstar around that exceeds any old performance
                    if self.optimization_info.maximize_metric:
                        if metric_test > best_metric_yet[1]:
                            best_metric_yet = config_performance
                            self.current_best_config.save_memory()
                            self.current_best_config = current_config_mdb
                        else:
                            current_config_mdb.save_memory()
                    else:
                        if metric_test < best_metric_yet[1]:
                            best_metric_yet = config_performance
                            self.current_best_config.save_memory()
                            self.current_best_config = current_config_mdb
                        else:
                            current_config_mdb.save_memory()

                # Print Result for config
                computation_duration = (
                    current_config_mdb.computation_end_time
                    - current_config_mdb.computation_start_time
                )
                logger.info(
                    "Computed configuration "
                    + str(tested_config_counter)
                    + "/"
                    + max_nr_of_configs
                    + " in "
                    + str(computation_duration)
                )
                logger.info(
                    "Performance:             "
                    + self.optimization_info.best_config_metric
                    + " - Train: "
                    + "%.4f" % config_performance[0]
                    + ", Validation: "
                    + "%.4f" % config_performance[1]
                )
                logger.info(
                    "Best Performance So Far: "
                    + self.optimization_info.best_config_metric
                    + " - Train: "
                    + "%.4f" % best_metric_yet[0]
                    + ", Validation: "
                    + "%.4f" % best_metric_yet[1]
                )
            else:
                config_performance = (-1, -1)
                # Print Result for config
                logger.debug("...failed:")
                logger.error(current_config_mdb.config_error)

            # add config to result tree
            self.result_object.tested_config_list.append(current_config_mdb)

            # 3. inform optimizer about performance
            logger.debug("Telling hyperparameter optimizer about recent performance.")
            self.optimizer.tell(current_config, config_performance)
            logger.debug("Asking hyperparameter optimizer for new config.")
        logger.clean_info(
            "---------------------------------------------------------------------------------------------------------------"
        )
        logger.info(
            "Hyperparameter Optimization finished. Now finding best configuration .... "
        )
        # now go on with the best config found
        if tested_config_counter > 0:
            best_config_outer_fold = self.optimization_info.get_optimum_config(
                self.result_object.tested_config_list, fold_operation
            )

            if not best_config_outer_fold:
                raise Exception("No best config was found!")

            # ... and create optimal pipeline
            optimum_pipe = self.copy_pipe_fnc()
            if self.cache_updater is not None:
                self.cache_updater(optimum_pipe, self.cache_folder, "fixed_fold_id")
            optimum_pipe.caching = False
            # set self to best config
            optimum_pipe.set_params(**best_config_outer_fold.config_dict)

            # Todo: set all children to best config and inform to NOT optimize again, ONLY fit
            # for child_name, child_config in best_config_outer_fold_mdb.children_config_dict.items():
            #     if child_config:
            #         # in case we have a pipeline stacking we need to identify the particular subhyperpipe
            #         splitted_name = child_name.split('__')
            #         if len(splitted_name) > 1:
            #             stacking_element = self.optimum_pipe.named_steps[splitted_name[0]]
            #             pipe_element = stacking_element.elements[splitted_name[1]]
            #         else:
            #             pipe_element = self.optimum_pipe.named_steps[child_name]
            #         pipe_element.set_params(**child_config)
            #         pipe_element.is_final_fit = True

            # self.__distribute_cv_info_to_hyperpipe_children(reset=True)

            logger.debug("Fitting model with best configuration of outer fold...")
            optimum_pipe.fit(
                self._validation_X, self._validation_y, **self._validation_kwargs
            )

            self.result_object.best_config = best_config_outer_fold

            # save test performance
            best_config_performance_mdb = MDBInnerFold()
            best_config_performance_mdb.fold_nr = -99
            best_config_performance_mdb.number_samples_training = self._validation_y.shape[
                0
            ]
            best_config_performance_mdb.number_samples_validation = self._test_y.shape[
                0
            ]
            best_config_performance_mdb.feature_importances = (
                optimum_pipe.feature_importances_
            )

            if self.cross_validaton_info.eval_final_performance:
                # Todo: generate mean and std over outer folds as well. move this items to the top
                logger.info("Calculating best model performance on test set...")

                logger.debug("...scoring test data")
                test_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._test_X,
                    self._test_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id
                    ].test_indices,
                    metrics=self.optimization_info.metrics,
                    **self._test_kwargs
                )

                logger.debug("... scoring training data")

                train_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._validation_X,
                    self._validation_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id
                    ].train_indices,
                    metrics=self.optimization_info.metrics,
                    training=True,
                    **self._validation_kwargs
                )

                best_config_performance_mdb.training = train_score_mdb
                best_config_performance_mdb.validation = test_score_mdb

                print_double_metrics(train_score_mdb.metrics, test_score_mdb.metrics)
            else:

                def _copy_inner_fold_means(metric_dict):
                    # We copy all mean values from validation to the best config
                    # training
                    train_item_metrics = {}
                    for m in metric_dict:
                        if m.operation == str(fold_operation):
                            train_item_metrics[m.metric_name] = m.value
                    train_item = MDBScoreInformation()
                    train_item.metrics_copied_from_inner = True
                    train_item.metrics = train_item_metrics
                    return train_item

                # training
                best_config_performance_mdb.training = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_train
                )
                # validation
                best_config_performance_mdb.validation = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_test
                )

            # write best config performance to best config item
            self.result_object.best_config.best_config_score = (
                best_config_performance_mdb
            )

        logger.info(
            "Computations in outer fold {} took {} minutes.".format(
                self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr,
                (datetime.datetime.now() - outer_fold_fit_start_time).total_seconds()
                / 60,
            )
        )