Пример #1
0
def test_check_input_ext():
    test_filename = 'help'
    ext = 'py'
    out_filename = utils.check_input_ext(test_filename, ext)
    assert str(out_filename) == f'{test_filename}.{ext}'

    test_filename = 'help.txt.gz'
    assert str(utils.check_input_ext(test_filename, ext)) == 'help.py'
Пример #2
0
def phys2bids(filename,
              info=False,
              indir='.',
              outdir='.',
              heur_file=None,
              sub=None,
              ses=None,
              chtrig=0,
              chsel=None,
              num_timepoints_expected=None,
              tr=None,
              thr=None,
              pad=9,
              ch_name=[],
              yml='',
              debug=False,
              quiet=False):
    """
    Run main workflow of phys2bids.

    Runs the parser, does some checks on input, then imports
    the right interface file to read the input. If only info is required,
    it returns a summary onscreen.
    Otherwise, it operates on the input to return a .tsv.gz file, possibly
    in BIDS format.

    Raises
    ------
    NotImplementedError
        If the file extension is not supported yet.
    """
    # Check options to make them internally coherent pt. I
    # #!# This can probably be done while parsing?
    outdir = os.path.abspath(outdir)
    os.makedirs(outdir, exist_ok=True)
    os.makedirs(os.path.join(outdir, 'code'), exist_ok=True)
    conversion_path = os.path.join(outdir, 'code', 'conversion')
    os.makedirs(conversion_path, exist_ok=True)

    # Create logfile name
    basename = 'phys2bids_'
    extension = 'tsv'
    isotime = datetime.datetime.now().strftime('%Y-%m-%dT%H%M%S')
    logname = os.path.join(conversion_path,
                           (basename + isotime + '.' + extension))

    # Set logging format
    log_formatter = logging.Formatter(
        '%(asctime)s\t%(name)-12s\t%(levelname)-8s\t%(message)s',
        datefmt='%Y-%m-%dT%H:%M:%S')

    # Set up logging file and open it for writing
    log_handler = logging.FileHandler(logname)
    log_handler.setFormatter(log_formatter)
    sh = logging.StreamHandler()

    if quiet:
        logging.basicConfig(level=logging.WARNING,
                            handlers=[log_handler, sh],
                            format='%(levelname)-10s %(message)s')
    elif debug:
        logging.basicConfig(level=logging.DEBUG,
                            handlers=[log_handler, sh],
                            format='%(levelname)-10s %(message)s')
    else:
        logging.basicConfig(level=logging.INFO,
                            handlers=[log_handler, sh],
                            format='%(levelname)-10s %(message)s')

    version_number = _version.get_versions()['version']
    LGR.info(f'Currently running phys2bids version {version_number}')
    LGR.info(f'Input file is {filename}')

    # Save call.sh
    arg_str = ' '.join(sys.argv[1:])
    call_str = f'phys2bids {arg_str}'
    f = open(os.path.join(conversion_path, 'call.sh'), "a")
    f.write(f'#!bin/bash \n{call_str}')
    f.close()

    # Check options to make them internally coherent pt. II
    # #!# This can probably be done while parsing?
    indir = os.path.abspath(indir)
    if chtrig < 0:
        raise Exception(
            'Wrong trigger channel. Channel indexing starts with 0!')
    filename, ftype = utils.check_input_type(filename, indir)

    if heur_file:
        heur_file = utils.check_input_ext(heur_file, '.py')
        utils.check_file_exists(heur_file)

    infile = os.path.join(indir, filename)
    utils.check_file_exists(infile)

    if isinstance(num_timepoints_expected, int):
        num_timepoints_expected = [num_timepoints_expected]
    if isinstance(tr, (int, float)):
        tr = [tr]

    if tr is not None and num_timepoints_expected is not None:
        # If tr and ntp were specified, check that tr is either length one or ntp.
        if len(num_timepoints_expected) != len(tr) and len(tr) != 1:
            raise Exception('Number of sequence types listed with TR '
                            'doesn\'t match expected number of runs in '
                            'the session')

    # Read file!
    LGR.info(f'Reading the file {infile}')
    if ftype == 'acq':
        from phys2bids.io import load_acq
        phys_in = load_acq(infile, chtrig)
    elif ftype == 'txt':
        from phys2bids.io import load_txt
        phys_in = load_txt(infile, chtrig)
    elif ftype == 'mat':
        from phys2bids.io import load_mat
        phys_in = load_mat(infile, chtrig)

    LGR.info('Checking that units of measure are BIDS compatible')
    for index, unit in enumerate(phys_in.units):
        phys_in.units[index] = bids.bidsify_units(unit)

    LGR.info('Reading infos')
    phys_in.print_info(filename)
    # #!# Here the function viz.plot_channel should be called
    viz.plot_all(phys_in.ch_name, phys_in.timeseries, phys_in.units,
                 phys_in.freq, infile, conversion_path)
    # If only info were asked, end here.
    if info:
        return

    # The next few lines remove the undesired channels from phys_in.
    if chsel:
        LGR.info('Dropping unselected channels')
        for i in reversed(range(0, phys_in.ch_amount)):
            if i not in chsel:
                phys_in.delete_at_index(i)

    # If requested, change channel names.
    if ch_name:
        LGR.info('Renaming channels with given names')
        phys_in.rename_channels(ch_name)

    # Checking acquisition type via user's input
    if tr is not None and num_timepoints_expected is not None:

        #  Multi-run acquisition type section
        #  Check list length, more than 1 means multi-run
        if len(num_timepoints_expected) > 1:
            # if multi-run of same sequence type, pad list with ones
            # and multiply array with user's input
            if len(tr) == 1:
                tr = np.ones(len(num_timepoints_expected)) * tr[0]

            # Sum of values in ntp_list should be equivalent to num_timepoints_found
            phys_in.check_trigger_amount(
                thr=thr,
                num_timepoints_expected=sum(num_timepoints_expected),
                tr=1)

            # Check that sum of tp expected is equivalent to num_timepoints_found,
            # if it passes call slice4phys
            if phys_in.num_timepoints_found != sum(num_timepoints_expected):
                raise Exception('The number of triggers found is different '
                                'than expected. Better stop now than break '
                                'something.')

            # slice the recording based on user's entries
            # !!! ATTENTION: PHYS_IN GETS OVERWRITTEN AS DICTIONARY
            phys_in = slice4phys(phys_in, num_timepoints_expected, tr,
                                 phys_in.thr, pad)
            # returns a dictionary in the form {run_idx: phys_in[startpoint, endpoint]}

            # save a figure for each run | give the right acquisition parameters for runs
            fileprefix = os.path.join(
                conversion_path,
                os.path.splitext(os.path.basename(filename))[0])
            for i, run in enumerate(phys_in.keys()):
                plot_fileprefix = f'{fileprefix}_0{run}'
                viz.export_trigger_plot(phys_in[run], chtrig, plot_fileprefix,
                                        tr[i], num_timepoints_expected[i],
                                        filename, sub, ses)

        # Single run acquisition type, or : nothing to split workflow
        else:
            # Run analysis on trigger channel to get first timepoint
            # and the time offset.
            phys_in.check_trigger_amount(thr, num_timepoints_expected[0],
                                         tr[0])
            # save a figure of the trigger
            fileprefix = os.path.join(
                conversion_path,
                os.path.splitext(os.path.basename(filename))[0])
            viz.export_trigger_plot(phys_in, chtrig, fileprefix, tr[0],
                                    num_timepoints_expected[0], filename, sub,
                                    ses)

            # Reassign phys_in as dictionary
            # !!! ATTENTION: PHYS_IN GETS OVERWRITTEN AS DICTIONARY
            phys_in = {1: phys_in}

    else:
        LGR.warning('Skipping trigger pulse count. If you want to run it, '
                    'call phys2bids using both "-ntp" and "-tr" arguments')
        # !!! ATTENTION: PHYS_IN GETS OVERWRITTEN AS DICTIONARY
        phys_in = {1: phys_in}

    # The next few lines create a dictionary of different BlueprintInput
    # objects, one for each unique frequency for each run in phys_in
    # they also save the amount of runs and unique frequencies
    run_amount = len(phys_in)
    uniq_freq_list = set(phys_in[1].freq)
    freq_amount = len(uniq_freq_list)
    if freq_amount > 1:
        LGR.info(f'Found {freq_amount} different frequencies in input!')

    if run_amount > 1:
        LGR.info(f'Found {run_amount} different scans in input!')

    LGR.info(f'Preparing {freq_amount*run_amount} output files.')
    # Create phys_out dict that will have a blueprint object for each different frequency
    phys_out = {}

    if heur_file is not None and sub is not None:
        LGR.info(f'Preparing BIDS output using {heur_file}')
        # If heuristics are used, init a dict of arguments to pass to use_heuristic
        heur_args = {
            'heur_file': heur_file,
            'sub': sub,
            'ses': ses,
            'filename': filename,
            'outdir': outdir,
            'run': '',
            'record_label': ''
        }
        # Generate participants.tsv file if it doesn't exist already.
        # Update the file if the subject is not in the file.
        # Do not update if the subject is already in the file.
        bids.participants_file(outdir, yml, sub)
        # Generate dataset_description.json file if it doesn't exist already.
        bids.dataset_description_file(outdir)
        # Generate README file if it doesn't exist already.
        bids.readme_file(outdir)
        cp(
            heur_file,
            os.path.join(
                conversion_path,
                os.path.splitext(os.path.basename(heur_file))[0] + '.py'))
    elif heur_file is not None and sub is None:
        LGR.warning('While "-heur" was specified, option "-sub" was not.\n'
                    'Skipping BIDS formatting.')

    # Export a (set of) phys_out for each element in phys_in
    # run keys start from 1 (human friendly)
    for run in phys_in.keys():
        for uniq_freq in uniq_freq_list:
            # Initialise the key for the (possibly huge amount of) dictionary entries
            key = f'{run}_{uniq_freq}'
            # copy the phys_in object to the new dict entry
            phys_out[key] = deepcopy(phys_in[run])
            # this counter will take into account how many channels are eliminated
            count = 0
            # for each channel in the original phys_in object
            # take the frequency
            for idx, i in enumerate(phys_in[run].freq):
                # if that frequency is different than the frequency of the phys_obj entry
                if i != uniq_freq:
                    # eliminate that channel from the dict since we only want channels
                    # with the same frequency
                    phys_out[key].delete_at_index(idx - count)
                    # take into acount the elimination so in the next eliminated channel we
                    # eliminate correctly
                    count += 1
            # Also create a BlueprintOutput object for each unique frequency found.
            # Populate it with the corresponding blueprint input and replace it
            # in the dictionary.
            # Add time channel in the proper frequency.
            if uniq_freq != phys_in[run].freq[0]:
                phys_out[key].ch_name.insert(0, phys_in[run].ch_name[0])
                phys_out[key].units.insert(0, phys_in[run].units[0])
                phys_out[key].timeseries.insert(
                    0,
                    np.linspace(phys_in[run].timeseries[0][0],
                                phys_in[run].timeseries[0][-1],
                                num=phys_out[key].timeseries[0].shape[0]))
            # Add trigger channel in the proper frequency.
            if uniq_freq != phys_in[run].freq[chtrig]:
                phys_out[key].ch_name.insert(1, phys_in[run].ch_name[chtrig])
                phys_out[key].units.insert(1, phys_in[run].units[chtrig])
                phys_out[key].timeseries.insert(
                    1,
                    np.interp(phys_out[key].timeseries[0],
                              phys_in[run].timeseries[0],
                              phys_in[run].timeseries[chtrig]))
            phys_out[key] = BlueprintOutput.init_from_blueprint(phys_out[key])

        # Preparing output parameters: name and folder.
        for uniq_freq in uniq_freq_list:
            key = f'{run}_{uniq_freq}'
            # If possible, prepare bids renaming.
            if heur_file is not None and sub is not None:
                # Add run info to heur_args if more than one run is present
                if run_amount > 1:
                    heur_args['run'] = f'{run:02d}'

                # Append "recording-freq" to filename if more than one freq
                if freq_amount > 1:
                    heur_args['record_label'] = f'{uniq_freq:.0f}Hz'

                phys_out[key].filename = bids.use_heuristic(**heur_args)

                # If any filename exists already because of multirun, append labels
                # But warn about the non-validity of this BIDS-like name.
                if run_amount > 1:
                    if any([
                            phys.filename == phys_out[key].filename
                            for phys in phys_out.values()
                    ]):
                        phys_out[key].filename = (f'{phys_out[key].filename}'
                                                  f'_take-{run}')
                        LGR.warning(
                            'Identified multiple outputs with the same name.\n'
                            'Appending fake label to avoid overwriting.\n'
                            '!!! ATTENTION !!! the output is not BIDS compliant.\n'
                            'Please check heuristics to solve the problem.')

            else:
                phys_out[key].filename = os.path.join(
                    outdir,
                    os.path.splitext(os.path.basename(filename))[0])
                # Append "run" to filename if more than one run
                if run_amount > 1:
                    phys_out[
                        key].filename = f'{phys_out[key].filename}_{run:02d}'
                # Append "freq" to filename if more than one freq
                if freq_amount > 1:
                    phys_out[
                        key].filename = f'{phys_out[key].filename}_{uniq_freq:.0f}Hz'

            LGR.info(f'Exporting files for run {run} freq {uniq_freq}')
            np.savetxt(phys_out[key].filename + '.tsv.gz',
                       phys_out[key].timeseries,
                       fmt='%.8e',
                       delimiter='\t')
            print_json(phys_out[key].filename, phys_out[key].freq,
                       phys_out[key].start_time, phys_out[key].ch_name)
            print_summary(
                filename, num_timepoints_expected,
                phys_in[run].num_timepoints_found, uniq_freq,
                phys_out[key].start_time,
                os.path.join(
                    conversion_path,
                    os.path.splitext(os.path.basename(
                        phys_out[key].filename))[0]))
Пример #3
0
def phys2bids(filename,
              info=False,
              indir='.',
              outdir='.',
              heur_file=None,
              sub=None,
              ses=None,
              chtrig=0,
              chsel=None,
              num_timepoints_expected=0,
              tr=1,
              thr=None,
              ch_name=[],
              chplot='',
              debug=False,
              quiet=False):
    """
    Main workflow of phys2bids.

    Runs the parser, does some checks on input, then imports
    the right interface file to read the input. If only info is required,
    it returns a summary onscreen.
    Otherwise, it operates on the input to return a .tsv.gz file, possibily
    in BIDS format.

    Raises
    ------
    NotImplementedError
        If the file extension is not supported yet.

    """
    # Check options to make them internally coherent pt. I
    # #!# This can probably be done while parsing?
    outdir = utils.check_input_dir(outdir)
    utils.path_exists_or_make_it(outdir)

    # Create logfile name
    basename = 'phys2bids_'
    extension = 'tsv'
    isotime = datetime.datetime.now().strftime('%Y-%m-%dT%H%M%S')
    logname = os.path.join(outdir, (basename + isotime + '.' + extension))

    # Set logging format
    log_formatter = logging.Formatter(
        '%(asctime)s\t%(name)-12s\t%(levelname)-8s\t%(message)s',
        datefmt='%Y-%m-%dT%H:%M:%S')

    # Set up logging file and open it for writing
    log_handler = logging.FileHandler(logname)
    log_handler.setFormatter(log_formatter)
    sh = logging.StreamHandler()

    if quiet:
        logging.basicConfig(level=logging.WARNING, handlers=[log_handler, sh])
    elif debug:
        logging.basicConfig(level=logging.DEBUG, handlers=[log_handler, sh])
    else:
        logging.basicConfig(level=logging.INFO, handlers=[log_handler, sh])

    version_number = _version.get_versions()['version']
    LGR.info(f'Currently running phys2bids version {version_number}')
    LGR.info(f'Input file is {filename}')

    # Check options to make them internally coherent pt. II
    # #!# This can probably be done while parsing?
    indir = utils.check_input_dir(indir)
    filename, ftype = utils.check_input_type(filename, indir)

    if heur_file:
        heur_file = utils.check_input_ext(heur_file, '.py')
        utils.check_file_exists(heur_file)

    infile = os.path.join(indir, filename)
    utils.check_file_exists(infile)

    # Read file!
    if ftype == 'acq':
        from phys2bids.interfaces.acq import populate_phys_input
    elif ftype == 'txt':
        from phys2bids.interfaces.txt import populate_phys_input
    else:
        # #!# We should add a logger here.
        raise NotImplementedError('Currently unsupported file type.')

    LGR.info(f'Reading the file {infile}')
    phys_in = populate_phys_input(infile, chtrig)
    LGR.info('Reading infos')
    phys_in.print_info(filename)
    # #!# Here the function viz.plot_channel should be called
    if chplot != '' or info:
        viz.plot_all(phys_in.ch_name, phys_in.timeseries, phys_in.units,
                     phys_in.freq, infile, chplot)
    # If only info were asked, end here.
    if info:
        return

    # Create trigger plot. If possible, to have multiple outputs in the same
    # place, adds sub and ses label.
    if tr != 0 and num_timepoints_expected != 0:
        # Run analysis on trigger channel to get first timepoint and the time offset.
        # #!# Get option of no trigger! (which is wrong practice or Respiract)
        phys_in.check_trigger_amount(chtrig, thr, num_timepoints_expected, tr)
        LGR.info('Plot trigger')
        plot_path = os.path.join(
            outdir,
            os.path.splitext(os.path.basename(filename))[0])
        if sub:
            plot_path += f'_sub-{sub}'
        if ses:
            plot_path += f'_ses-{ses}'
        viz.plot_trigger(phys_in.timeseries[0], phys_in.timeseries[chtrig],
                         plot_path, tr, phys_in.thr, num_timepoints_expected,
                         filename)
    else:
        LGR.warning('Skipping trigger pulse count. If you want to run it, '
                    'call phys2bids using "-ntp" and "-tr" arguments')

    # The next few lines remove the undesired channels from phys_in.
    if chsel:
        LGR.info('Dropping unselected channels')
        for i in reversed(range(0, phys_in.ch_amount)):
            if i not in chsel:
                phys_in.delete_at_index(i)

    # If requested, change channel names.
    if ch_name:
        LGR.info('Renaming channels with given names')
        phys_in.rename_channels(ch_name)

    # The next few lines create a dictionary of different BlueprintInput
    # objects, one for each unique frequency in phys_in
    uniq_freq_list = set(phys_in.freq)
    output_amount = len(uniq_freq_list)
    if output_amount > 1:
        LGR.warning(f'Found {output_amount} different frequencies in input!')

    LGR.info(f'Preparing {output_amount} output files.')
    phys_out = {}  # create phys_out dict that will have a
    # blueprint object per frequency
    # for each different frequency
    for uniq_freq in uniq_freq_list:
        # copy the phys_in object to the new dict entry
        phys_out[uniq_freq] = deepcopy(phys_in)
        # this counter will take into account how many channels are eliminated
        count = 0
        # for each channel in the original phys_in object
        # take the frequency
        for idx, i in enumerate(phys_in.freq):
            # if that frequency is different than the frequency of the phys_obj entry
            if i != uniq_freq:
                # eliminate that channel from the dict since we only want channels
                # with the same frequency
                phys_out[uniq_freq].delete_at_index(idx - count)
                # take into acount the elimination so in the next eliminated channel we
                # eliminate correctly
                count += 1
        # Also create a BlueprintOutput object for each unique frequency found.
        # Populate it with the corresponding blueprint input and replace it
        # in the dictionary.
        phys_out[uniq_freq] = BlueprintOutput.init_from_blueprint(
            phys_out[uniq_freq])

    if heur_file and sub:
        LGR.info(f'Preparing BIDS output using {heur_file}')
    elif heur_file and not sub:
        LGR.warning(f'While "-heur" was specified, option "-sub" was not.\n'
                    f'Skipping BIDS formatting.')

    # Preparing output parameters: name and folder.
    for uniq_freq in uniq_freq_list:
        # If possible, prepare bids renaming.
        if heur_file and sub:
            if output_amount > 1:
                # Add "recording-freq" to filename if more than one freq
                outfile = use_heuristic(heur_file, sub, ses, filename, outdir,
                                        uniq_freq)
            else:
                outfile = use_heuristic(heur_file, sub, ses, filename, outdir)

        else:
            outfile = os.path.join(
                outdir,
                os.path.splitext(os.path.basename(filename))[0])
            if output_amount > 1:
                # Append "freq" to filename if more than one freq
                outfile = f'{outfile}_{uniq_freq}'

        LGR.info(f'Exporting files for freq {uniq_freq}')
        savetxt(outfile + '.tsv.gz',
                phys_out[uniq_freq].timeseries,
                fmt='%.8e',
                delimiter='\t')
        print_json(outfile, phys_out[uniq_freq].freq,
                   phys_out[uniq_freq].start_time, phys_out[uniq_freq].ch_name)
        print_summary(filename, num_timepoints_expected,
                      phys_in.num_timepoints_found, uniq_freq,
                      phys_out[uniq_freq].start_time, outfile)
Пример #4
0
def _main(argv=None):
    """
    Main workflow of phys2bids.
    Runs the parser, does some checks on input, then imports
    the right interface file to read the input. If only info is required,
    it returns a summary onscreen.
    Otherwise, it operates on the input to return a .tsv.gz file, possibily
    in BIDS format.

    """
    options = _get_parser().parse_args(argv)
    # Check options to make them internally coherent
    # #!# This can probably be done while parsing?
    options.indir = utils.check_input_dir(options.indir)
    options.outdir = utils.check_input_dir(options.outdir)
    options.filename, ftype = utils.check_input_type(options.filename,
                                                     options.indir)

    if options.heur_file:
        options.heur_file = utils.check_input_ext(options.heur_file, '.py')
        utils.check_file_exists(options.heur_file)

    infile = os.path.join(options.indir, options.filename)
    utils.check_file_exists(infile)
    outfile = os.path.join(
        options.outdir,
        os.path.splitext(os.path.basename(options.filename))[0])

    # Read file!
    if ftype == 'acq':
        from phys2bids.interfaces.acq import populate_phys_input
    elif ftype == 'txt':
        from phys2bids.interfaces.txt import populate_phys_input
    else:
        # #!# We should add a logger here.
        raise NotImplementedError('Currently unsupported file type.')

    print('Reading the file')
    phys_in = populate_phys_input(infile, options.chtrig)
    print('Reading infos')
    phys_in.print_info(options.filename)
    # #!# Here the function viz.plot_channel should be called
    # for the desired channels.

    # If only info were asked, end here.
    if options.info:
        return

    # Run analysis on trigger channel to get first timepoint and the time offset.
    # #!# Get option of no trigger! (which is wrong practice or Respiract)
    phys_in.check_trigger_amount(options.thr, options.num_timepoints_expected,
                                 options.tr)

    # Create output folder if necessary
    print('Checking that the output folder exists')
    utils.path_exists_or_make_it(options.outdir)

    # Create trigger plot. If possible, to have multiple outputs in the same
    # place, adds sub and ses label.
    print('Plot trigger')
    plot_path = deepcopy(outfile)
    if options.sub:
        plot_path += f'_sub-{options.sub}'
    if options.ses:
        plot_path += f'_sub-{options.ses}'
    viz.plot_trigger(phys_in.timeseries[0], phys_in.timeseries[1], plot_path,
                     options)

    # The next few lines remove the undesired channels from phys_in.
    if options.chsel:
        print('Dropping unselected channels')
        for i in reversed(range(0, phys_in.ch_amount)):
            if i not in options.chsel:
                phys_in.delete_at_index(i)

    # If requested, change channel names.
    if options.ch_name:
        print('Renaming channels with given names')
        phys_in.rename_channels(options.ch_name)

    # The next few lines create a dictionary of different BlueprintInput
    # objects, one for each unique frequency in phys_in
    uniq_freq_list = set(phys_in.freq)
    output_amount = len(uniq_freq_list)
    if output_amount > 1:
        print(f'Found {output_amount} different frequencies in input!')

    print(f'Preparing {output_amount} output files.')
    phys_out = {}
    for uniq_freq in uniq_freq_list:
        phys_out[uniq_freq] = deepcopy(phys_in)
        for i in reversed(phys_in.freq):
            if i != uniq_freq:
                phys_out[uniq_freq].delete_at_index(phys_in.ch_amount - i - 1)

        # Also create a BlueprintOutput object for each unique frequency found.
        # Populate it with the corresponding blueprint input and replace it
        # in the dictionary.
        phys_out[uniq_freq] = BlueprintOutput.init_from_blueprint(
            phys_out[uniq_freq])

    if options.heur_file and options.sub:
        print(f'Preparing BIDS output using {options.heur_file}')
    elif options.heur_file and not options.sub:
        print(f'While "-heur" was specified, option "-sub" was not.\n'
              f'Skipping BIDS formatting.')

    for uniq_freq in uniq_freq_list:
        # If possible, prepare bids renaming.
        if options.heur_file and options.sub:
            if output_amount > 1:
                # Add "recording-freq" to filename if more than one freq
                outfile = use_heuristic(options.heur_file, options.sub,
                                        options.ses, options.filename,
                                        options.outdir, uniq_freq)
            else:
                outfile = use_heuristic(options.heur_file, options.sub,
                                        options.ses, options.filename,
                                        options.outdir)

        elif output_amount > 1:
            # Append "freq" to filename if more than one freq
            outfile = f'outfile_{uniq_freq}'

        print(f'Exporting files for freq {uniq_freq}')
        savetxt(outfile + '.tsv.gz',
                phys_out[uniq_freq].timeseries,
                fmt='%.8e',
                delimiter='\t')
        print_json(outfile, phys_out[uniq_freq].freq,
                   phys_out[uniq_freq].start_time, phys_out[uniq_freq].ch_name)
        print_summary(options.filename, options.num_timepoints_expected,
                      phys_in.num_timepoints_found, uniq_freq,
                      phys_out[uniq_freq].start_time, outfile)