def get_images(self, orig_image: OrthographicImage):
        image = clone(orig_image)

        draw_around_box(image, box=self.box)
        background_color = image.value_from_depth(get_distance_to_box(image, self.box))

        mat_image_resized = cv2.resize(image.mat, self.size_resized)

        mat_images = []
        for a in self.a_space:
            rot_mat = cv2.getRotationMatrix2D(
                (self.size_resized[0] / 2, self.size_resized[1] / 2),
                a * 180.0 / np.pi,
                1.0
            )
            rot_mat[:, 2] += [
                (self.size_rotated[0] - self.size_resized[0]) / 2,
                (self.size_rotated[1] - self.size_resized[1]) / 2
            ]
            dst_depth = cv2.warpAffine(mat_image_resized, rot_mat, self.size_rotated, borderValue=background_color)
            mat_images.append(crop(dst_depth, self.size_cropped))

        mat_images = np.array(mat_images) / np.iinfo(image.mat.dtype).max
        if len(mat_images.shape) == 3:
            mat_images = np.expand_dims(mat_images, axis=-1)

        # mat_images = 2 * mat_images - 1.0
        return mat_images
    def test_shift_conversion(self):
        conv = Converter(shift_z_offset=0.0, box=self.box)

        image = OrthographicImage(
            self.read_image(self.file_path / self.image_name), 2000.0, 0.22,
            0.4, '', Config.default_image_pose)

        action = Action()
        action.type = 'shift'
        action.pose = RobotPose()
        action.pose.x = -0.02
        action.pose.y = 0.105
        action.pose.a = 1.52
        action.pose.d = 0.078
        action.index = 1
        action.shift_motion = [0.03, 0.0]

        draw_pose(image, action.pose, convert_to_rgb=True)
        draw_around_box(image, box=self.box, draw_lines=True)
        imageio.imwrite(str(self.file_path / 'gen-shift-draw-pose.png'),
                        image.mat)

        self.assertTrue(conv.shift_check_safety(action, [image]))

        conv.calculate_pose(action, [image])
        self.assertLess(action.pose.z, 0.0)
    def test_drawing(self):
        image = OrthographicImage(self.read_image(self.file_path / self.image_name), 2000.0, 0.22, 0.4, '', Config.default_image_pose)

        self.assertEqual(image.mat.dtype, np.uint16)

        draw_around_box(image, box=Config.box)
        imageio.imwrite(str(self.file_path / 'gen-draw-around-bin-unit.png'), image.mat)
Пример #4
0
    def infer_grasp(self, req: InferGraspRequest) -> InferGraspResponse:
        image_res = self.get_images()
        cv_image = self.bridge.imgmsg_to_cv2(image_res.image, 'mono16')
        image = OrthographicImage(cv_image, image_res.pixel_size,
                                  image_res.min_depth, image_res.max_depth)

        images = [image]

        action = self.inference.infer(images, req.method)

        draw_image = clone(image)
        draw_image.mat = cv2.cvtColor(draw_image.mat, cv2.COLOR_GRAY2RGB)
        if self.draw_on_image:
            draw_around_box(draw_image, box=self.box, draw_lines=True)
            draw_pose(draw_image, action)

        if self.save_tmp_image:
            cv2.imwrite('/tmp/graspro/current-image.png', draw_image.mat)

        draw_image_msg = self.bridge.cv2_to_imgmsg(draw_image.mat, 'rgb8')
        self.image_publisher.publish(draw_image_msg)

        if self.publish_heatmap:
            heatmap = self.heatmapper.render(image, alpha=0.5)
            heatmap_msg = self.bridge.cv2_to_imgmsg(heatmap, 'rgb8')
            self.heatmap_publisher.publish(heatmap_msg)

        return InferGraspResponse(action=action)
    def test_loader(self):
        for suffix in ['ed-v', 'ed-side_b-0_400']:
            action, image = Loader.get_action('cylinder-cube-1',
                                              '2019-06-25-15-49-13-551',
                                              suffix)

            draw_around_box(image, box=Config.box)
            imageio.imwrite(
                str(self.file_path / f'gen-draw-around-box-{suffix}.png'),
                image.mat)

            self.assertEqual(image.mat.dtype, np.uint16)
            self.assertEqual(image.pixel_size, 2000.0)
            self.assertEqual(action.method, SelectionMethod.Prob)
    def load_element(self, params) -> Tuple[List[Any], List[Any]]:
        episode_id = params['episode']['id']
        action = Action(data=params['episode']['actions'][0])

        features, labels, info = [], [], []
        for suffix_list in params['suffixes']:
            suffix_list_taken = [
                s for s in suffix_list if s in action.images.keys()
            ]
            if len(suffix_list_taken) < len(suffix_list):
                continue

            try:
                index = self.indexer.from_action(action, suffix_list_taken[0])
            except:
                raise Exception(
                    f'Error in indexer at {params["database"]}, {episode_id}.')
            if index is None:
                continue

            for s in suffix_list:
                if not self.check_output_image(episode_id,
                                               s) or params['force_images']:
                    image = self.get_image(params['database'], episode_id, s)
                    draw_around_box(image, box=self.box)
                    area_image = self.get_area_image(image, action.pose,
                                                     params['size_cropped'],
                                                     params['size_output']).mat
                    self.write_output_image(area_image, episode_id, s)

            features.append([
                self.get_output_image(
                    episode_id,
                    s,
                    scale_around_zero=params['scale_around_zero'])
                for s in suffix_list
            ])
            labels.append([action.reward, index])

            object_type = [1, 0, 0]
            if 'final_pose' in action.__dict__ and action.reward == 1:
                object_type = [0, 0, 1
                               ] if action.final_pose.d > 0.035 else [0, 1, 0]
            info.append(object_type)

        return features, labels, info
Пример #7
0
def save_episode(predictor, database, episode_id, reward=1, action_type=1):
    action, image, image_after = Loader.get_action(database, episode_id,
                                                   ['ed-v', 'ed-after'])

    draw_around_box(image, box=Config.box)
    draw_around_box(image_after, box=Config.box)

    # background_color = image.value_from_depth(get_distance_to_box(image, Config.box))

    area = get_area_of_interest(image,
                                action.pose,
                                size_cropped=(256, 256),
                                size_result=predictor.size)
    area_after = get_area_of_interest(image_after,
                                      action.pose,
                                      size_cropped=(256, 256),
                                      size_result=predictor.size)

    result = predictor.predict(area,
                               reward=reward,
                               action_type=action_type,
                               sampling=True,
                               number=20)

    save_dir = Path.home() / 'Desktop' / 'predict-examples' / episode_id
    save_dir.mkdir(exist_ok=True)
    cv2.imwrite(str(save_dir / f'{predictor.name}_s_bef.png'), area.mat)
    cv2.imwrite(str(save_dir / f'{predictor.name}_s_aft.png'), area_after.mat)
    cv2.imwrite(str(save_dir / f'{predictor.name}_result.png'),
                result[0] * 255)

    if predictor.uncertainty:
        result[result < 0.1] = np.nan
        uncertainty = np.nanvar(result, axis=0)
        uncertainty /= np.nanmax(uncertainty) * 0.25

        uncertainty = np.clip(uncertainty * 255, 0, 255).astype(np.uint8)
        uncertainty = cv2.applyColorMap(uncertainty, cv2.COLORMAP_JET)

        cv2.imwrite(str(save_dir / f'{predictor.name}_unc.png'), uncertainty)
Пример #8
0
def api_image(episode_id):
    def send_image(image):
        _, image_encoded = cv2.imencode('.jpg', image)
        return flask.send_file(io.BytesIO(image_encoded),
                               mimetype='image/jpeg')

    def send_empty_image():
        empty = np.zeros((480, 752, 1))
        cv2.putText(empty,
                    '?', (310, 300),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    6,
                    100,
                    thickness=6)
        return send_image(empty)

    database_name = flask.request.values.get('database')
    suffix = flask.request.values.get('suffix')

    if flask.request.values.get('pose'):
        action = Action(data=json.loads(flask.request.values.get('pose')))
        image = Loader.get_image(database_name,
                                 episode_id,
                                 suffix,
                                 images=action.images)
    else:
        action, image = Loader.get_action(database_name, episode_id, suffix)

    if not action or suffix not in action.images.keys() or not image:
        return send_empty_image()

    draw_pose(image,
              action.pose,
              convert_to_rgb=True,
              reference_pose=action.images['ed-v']['pose'])

    if int(flask.request.values.get('box', default=0)):
        draw_around_box(image, box=Config.box, draw_lines=True)

    return send_image(image.mat / 255)
    def test_grasp_conversion(self):
        conv = Converter(grasp_z_offset=0.0, box=self.box)

        image = OrthographicImage(
            self.read_image(self.file_path / self.image_name), 2000.0, 0.22,
            0.4, '', Config.default_image_pose)

        action = Action()
        action.type = 'grasp'
        action.pose.x = -0.06
        action.pose.y = 0.099
        action.pose.a = 0.523
        action.pose.d = 0.078
        action.index = 1

        draw_pose(image, action.pose, convert_to_rgb=True)
        draw_around_box(image, box=self.box, draw_lines=True)
        imageio.imwrite(str(self.file_path / 'gen-grasp-draw-pose.png'),
                        image.mat)

        self.assertTrue(conv.grasp_check_safety(action, [image]))

        conv.calculate_pose(action, [image])
        self.assertLess(action.pose.z, 0.0)
    def infer_at_pose(self, images: List[OrthographicImage], pose: Affine):
        input_images = []
        for image in images:
            draw_around_box(image, box=self.box)

            area_mat = get_area_of_interest(
                image,
                pose,
                size_cropped=(200, 200),
                size_result=(32, 32),
                border_color=image.value_from_depth(get_distance_to_box(image, self.box)),
            ).mat
            area_mat = np.array(area_mat, dtype=np.float32) / np.iinfo(area_mat.dtype).max # 2 * x - 1.0
            area_mat_exp = np.expand_dims(area_mat, axis=-1)
            input_images.append(area_mat_exp)

        if self.monte_carlo:
            input_images_mc = [np.array([image for i in range(self.monte_carlo)]) for image in input_images]
            estimated_rewards_sampling = self.model.predict(input_images_mc)
            estimated_reward = np.mean(estimated_rewards_sampling, axis=0)
            estimated_reward_std = self.mutual_information(estimated_rewards_sampling)
            return estimated_reward, estimated_reward_std

        return self.model.predict([input_images])[0]
Пример #11
0
# Make gif: convert -delay 70 -loop 0 did_not_grasp/*.jpg did_not_grasp.gif

from pathlib import Path
import cv2

from config import Config
from data.loader import Loader
from picking.image import draw_around_box, draw_pose

for i, (d, e) in enumerate(Loader.yield_episodes('cylinder-cube-1')):
    action, image = Loader.get_action(d, e['id'], 'ed-v')
    action.pose.b = 0.3

    draw_around_box(image, box=Config.box)
    draw_pose(image, action.pose, convert_to_rgb=True)

    cv2.imshow('test', image.mat)
    cv2.waitKey(1000)

    cv2.imwrite(str(Path.home() / 'Desktop' / f'{e["id"]}.jpg'),
                image.mat / 255)

    if i >= 0:
        break
Пример #12
0
    def predict_images_after_action(
        self,
        images: List[OrthographicImage],
        action: Action,
        reward: float,
        action_type: int,
        uncertainty_images=None,
    ) -> List[OrthographicImage]:
        image = images[0]
        uncertainty_image = uncertainty_images[0]

        start = time.time()
        draw_around_box(image, box=Config.box)
        area = get_area_of_interest(image,
                                    action.pose,
                                    size_cropped=(256, 256),
                                    size_result=(64, 64))

        area_input = np.expand_dims(area.mat, axis=2).astype(
            np.float32) / np.iinfo(np.uint16).max * 2 - 1
        reward = np.expand_dims(np.expand_dims(np.expand_dims(reward, axis=1),
                                               axis=1),
                                axis=1).astype(np.float32)
        action_type = np.expand_dims(np.expand_dims(action_type, axis=1),
                                     axis=1)

        use_monte_carlo = self.monte_carlo and self.monte_carlo > 1

        if not use_monte_carlo:
            area_result = self.prediction_model.predict([[area_input],
                                                         [reward],
                                                         [action_type],
                                                         np.zeros(
                                                             (1, 1, 1, 8))])[0]
            area_result = np.array(np.iinfo(np.uint16).max *
                                   (area_result + 1) / 2,
                                   dtype=np.uint16)

        else:
            latent = np.random.normal(scale=0.05,
                                      size=(self.monte_carlo, 1, 1, 8))
            if self.monte_carlo > 3:
                latent[0, :, :, :] = 0.0

            predictions = self.prediction_model.predict([
                [area_input for _ in range(self.monte_carlo)],
                [reward for _ in range(self.monte_carlo)],
                [action_type for _ in range(self.monte_carlo)],
                latent,
            ])
            predictions = (predictions + 1) / 2

            predictions = np.array(predictions, dtype=np.float32)
            area_result = predictions[0]
            area_result = np.array(np.iinfo(np.uint16).max * area_result,
                                   dtype=np.uint16)

            predictions[predictions < 0.1] = np.nan
            area_uncertainty = np.nanvar(predictions, axis=0)
            area_uncertainty *= 7e3
            area_uncertainty[area_uncertainty > 1] = 1
            area_uncertainty = np.array(np.iinfo(np.uint16).max *
                                        area_uncertainty,
                                        dtype=np.uint16)

            uncertainty_image = patch_image_at(
                uncertainty_image,
                area_uncertainty,
                action.pose,
                size_cropped=(256, 256),
                operation='add',
            )

        result = patch_image_at(image,
                                area_result,
                                action.pose,
                                size_cropped=(256, 256))

        logger.info(f'Predicted image [s]: {time.time() - start:0.3f}')

        if use_monte_carlo:
            return [result], [uncertainty_image]
        return [result]
Пример #13
0
    def predict_actions(
        self,
        images: List[OrthographicImage],
        method: SelectionMethod,
        N=1,
        verbose=True,
    ) -> List[Action]:

        actions: List[Action] = []

        uncertainty_images = [
            OrthographicImage(np.zeros(i.mat.shape,
                                       dtype=np.uint16), i.pixel_size,
                              i.min_depth, i.max_depth, i.camera, i.pose)
            for i in images
        ]

        for i in range(N):
            for image in images:
                draw_around_box(image, box=Config.box)

            grasp = self.grasp_inference.infer(
                images, method, uncertainty_images=uncertainty_images)
            self.grasp_indexer.to_action(grasp)

            # Shift actions
            if Config.shift_objects and grasp.estimated_reward < Config.grasp_shift_threshold:
                shift = self.shift_inference.infer(images, method)
                self.shift_indexer.to_action(shift)

                bin_empty = shift.estimated_reward < Config.shift_empty_threshold

                if bin_empty:
                    actions.append(Action('bin_empty', safe=1))
                else:
                    self.converter.calculate_pose(shift, images)
                    actions.append(shift)

            # Grasp actions
            else:
                estimated_reward_lower_than_threshold = grasp.estimated_reward < Config.bin_empty_at_max_probability
                bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(
                    method)
                new_image = False

                if bin_empty:
                    actions.append(Action('bin_empty', safe=1))
                elif grasp.estimated_reward_std > 0.9:  # default=0.25
                    actions.append(Action('new_image', safe=1))
                else:
                    self.converter.calculate_pose(grasp, images)
                    actions.append(grasp)

            actions[-1].step = i
            action = actions[-1]
            logger.info(f'{i}: {action}')

            if verbose:
                image_copy = clone(images[0])
                uncertainty_image_copy = clone(uncertainty_images[0])

                draw_pose(image_copy, action.pose, convert_to_rgb=True)
                draw_pose(uncertainty_image_copy,
                          action.pose,
                          convert_to_rgb=True)

                cv2.imwrite(str(self.output_path / f'result-{i}.png'),
                            image_copy.mat)
                cv2.imwrite(str(self.output_path / f'uncertainty-{i}.png'),
                            uncertainty_image_copy.mat)

            if action.type == 'bin_empty' or action.type == 'new_image':
                break

            # Predict next image
            reward = action.estimated_reward > Config.bin_empty_at_max_probability if action.type == 'grasp' else action.estimated_reward
            action_type = self.grasp_shift_indexer.from_action(action)
            images = self.predict_images_after_action(
                images,
                action,
                reward=reward,
                action_type=action_type,
                uncertainty_images=uncertainty_images,
            )

            if isinstance(images, tuple):
                images, uncertainty_images = images
            else:
                uncertainty_images = None

        if verbose:
            cv2.imwrite(str(self.output_path / f'result-{i+1}.png'),
                        images[0].mat)
            cv2.imwrite(str(self.output_path / f'uncertainty-{i+1}.png'),
                        uncertainty_images[0].mat)

        return actions
Пример #14
0
    def plan_actions(
        self,
        images: List[OrthographicImage],
        method: SelectionMethod,
        depth=1,
        leaves=1,
        verbose=False,
    ) -> List[Action]:

        uncertainty_images = [
            OrthographicImage(np.zeros(i.mat.shape,
                                       dtype=np.uint16), i.pixel_size,
                              i.min_depth, i.max_depth, i.camera, i.pose)
            for i in images
        ]

        tree = PlanningTree(images, uncertainty_images)

        for node, i in tree.fill_nodes(leaves=leaves, depth=depth):
            # Visited actions: node.actions

            for image in node.images:
                draw_around_box(image, box=Config.box)

            grasp = self.grasp_inference.infer(
                node.images,
                method,
                uncertainty_images=node.uncertainty_images)
            self.grasp_indexer.to_action(grasp)

            # Shift actions
            if Config.shift_objects and grasp.estimated_reward < Config.grasp_shift_threshold:
                shift = self.shift_inference.infer(node.images, method)
                self.shift_indexer.to_action(shift)

                bin_empty = shift.estimated_reward < Config.shift_empty_threshold

                if bin_empty:
                    action = Action('bin_empty', safe=1)
                else:
                    self.converter.calculate_pose(shift, node.images)
                    action = shift

            # Grasp actions
            else:
                estimated_reward_lower_than_threshold = grasp.estimated_reward < Config.bin_empty_at_max_probability
                bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(
                    method)
                new_image = False

                if bin_empty:
                    action = Action('bin_empty', safe=1)
                elif grasp.estimated_reward_std > 0.9:  # default=0.25
                    action = Action('new_image', safe=1)
                else:
                    self.converter.calculate_pose(grasp, node.images)
                    action = grasp
            logger.info(f'{i}: {action}')

            if verbose:
                image_copy = clone(images[0])
                uncertainty_image_copy = clone(uncertainty_images[0])

                draw_pose(image_copy, action.pose, convert_to_rgb=True)
                draw_pose(uncertainty_image_copy,
                          action.pose,
                          convert_to_rgb=True)

                cv2.imwrite(str(self.output_path / f'result-{i}.png'),
                            image_copy.mat)
                cv2.imwrite(str(self.output_path / f'uncertainty-{i}.png'),
                            uncertainty_image_copy.mat)

            if action.type == 'bin_empty' or action.type == 'new_image':
                break

            # Predict next image
            reward = action.estimated_reward > Config.bin_empty_at_max_probability if action.type == 'grasp' else action.estimated_reward
            action_type = self.grasp_shift_indexer.from_action(action)
            images = self.predict_images_after_action(
                node.images,
                action,
                reward=reward,
                action_type=action_type,
                uncertainty_images=node.uncertainty_images,
            )

            if isinstance(images, tuple):
                images, uncertainty_images = images
            else:
                uncertainty_images = None

            node.add_action(action, images, uncertainty_images)

        if verbose:
            cv2.imwrite(str(self.output_path / f'result-{i+1}.png'),
                        node.images[0].mat)
            cv2.imwrite(str(self.output_path / f'uncertainty-{i+1}.png'),
                        node.uncertainty_images[0].mat)

        actions, max_reward, mean_reward = tree.get_actions_maximize_reward(
            max_depth=depth)
        print(
            f'Max reward: {max_reward:0.3f}, Mean reward: {mean_reward:0.3f}, Length: {len(actions)}'
        )

        # actions, max_steps, mean_steps = tree.get_actions_minimize_steps()
        return actions
    def get_images(self, image: OrthographicImage):
        root = tk.Tk()
        image_array = Image.fromarray(cv2.merge(cv2.split(image.mat)))
        image_gtk = ImageTk.PhotoImage(image=image_array)

        load_new_image = False
        ann = [-1000, -1000]

        def mouse_clicked(event):
            x, y = event.x, event.y
            ann[0] = x - self.size_input[0] / 2
            ann[1] = y - self.size_input[1] / 2

            image_show = Image.fromarray(cv2.merge(cv2.split(image.mat)))
            cv2.circle(image_show, (x, y), 2, (255, 255, 255), -1)
            image_array = Image.fromarray(cv2.merge(cv2.split(image_show)))
            image_gtk = ImageTk.PhotoImage(image=image_array)
            panel.configure(image=image_gtk)
            panel.image = image_gtk

        def button_submit():
            root.destroy()

        def new_image():
            load_new_image = True
            root.destroy()

        panel = tk.Label(root, image=image_gtk)
        button = tk.Button(root, text='Grasp Object', command=button_submit)
        button2 = tk.Button(root, text='New Image', command=new_image)

        panel.pack(side='top')
        button.pack(side='bottom')
        button2.pack(side='bottom')

        panel.bind('<Button 1>', mouse_clicked)
        root.mainloop()

        if load_new_image:
            return Action()

        draw_around_box(image, box=self.box)
        background_color = image.value_from_depth(-(image.pose * Affine(0, 0, self.box['size'][2])).z)
        image_resized = cv2.resize(image, self.size_resized)

        images = []
        anns = []
        for a in self.a_space:
            rot_mat = cv2.getRotationMatrix2D(
                (self.size_resized[0] / 2, self.size_resized[1] / 2),
                a * 180.0 / np.pi,
                1.0,
            )
            rot_mat[:, 2] += [
                (self.size_rotated[0] - self.size_resized[0]) / 2,
                (self.size_rotated[1] - self.size_resized[1]) / 2,
            ]
            dst_depth = cv2.warpAffine(image_resized, rot_mat, self.size_rotated, borderValue=background_color)
            images.append(crop(dst_depth, self.size_cropped))

            ann_scaled = (float(ann[0]) / self.scale_factors[0], float(ann[1]) / self.scale_factors[1])
            ann_scaled_rot = self.rotate_vector(ann_scaled, a)
            ann_scaled_rot_pos = (
                int(round(ann_scaled_rot[0] + self.size_cropped[0] / 2)),
                int(round(ann_scaled_rot[1] + self.size_cropped[1] / 2)),
            )

            x_vec = np.zeros(self.size_cropped[0])
            y_vec = np.zeros(self.size_cropped[1])
            if 0 <= ann_scaled_rot_pos[0] < self.size_cropped[0]:
                np.put(x_vec, ann_scaled_rot_pos[0], 1)
            if 0 <= ann_scaled_rot_pos[1] < self.size_cropped[1]:
                np.put(y_vec, ann_scaled_rot_pos[1], 1)

            ann_matrix = 255 * np.outer(y_vec, x_vec)
            anns.append(ann_matrix)
        return images, anns