Пример #1
0
def main():
    option_parser, opts, args =\
       parse_command_line_parameters(**script_info)
    if opts.verbose:
        print "Loading sequencing depth table: ",opts.input_seq_depth_file
    scaling_factors = {}
    for sample_id,depth in parse_seq_count_file(open(opts.input_seq_depth_file,'U')):
        scaling_factors[sample_id]=depth    
    
    ext=path.splitext(opts.input_count_table)[1]

    if opts.verbose:
        print "Loading count table: ", opts.input_count_table
    if (ext == '.gz'):
        genome_table = parse_biom_table(gzip.open(opts.input_count_table,'rb'))
    else:
        genome_table = parse_biom_table(open(opts.input_count_table,'U'))
    
    if opts.verbose:
        print "Scaling the metagenome..."
        
    scaled_metagenomes = scale_metagenomes(genome_table,scaling_factors)

    if opts.verbose:
        print "Writing results to output file: ",opts.output_metagenome_table
        
    make_output_dir_for_file(opts.output_metagenome_table)
    open(opts.output_metagenome_table,'w').write(format_biom_table(scaled_metagenomes))
Пример #2
0
def main():
    option_parser, opts, args =\
       parse_command_line_parameters(**script_info)
    if opts.verbose:
        print "Loading sequencing depth table: ", opts.input_seq_depth_file
    scaling_factors = {}
    for sample_id, depth in parse_seq_count_file(
            open(opts.input_seq_depth_file, 'U')):
        scaling_factors[sample_id] = depth

    ext = path.splitext(opts.input_count_table)[1]

    if opts.verbose:
        print "Loading count table: ", opts.input_count_table
    if (ext == '.gz'):
        genome_table = parse_biom_table(gzip.open(opts.input_count_table,
                                                  'rb'))
    else:
        genome_table = parse_biom_table(open(opts.input_count_table, 'U'))

    if opts.verbose:
        print "Scaling the metagenome..."

    scaled_metagenomes = scale_metagenomes(genome_table, scaling_factors)

    if opts.verbose:
        print "Writing results to output file: ", opts.output_metagenome_table

    make_output_dir_for_file(opts.output_metagenome_table)
    open(opts.output_metagenome_table,
         'w').write(format_biom_table(scaled_metagenomes))
Пример #3
0
def main():
    option_parser, opts, args = parse_command_line_parameters(**script_info)
    if opts.verbose:
        print "Loading sequencing depth table: ", opts.input_seq_depth_file
    scaling_factors = {}
    for sample_id, depth in parse_seq_count_file(open(opts.input_seq_depth_file, "U")):
        scaling_factors[sample_id] = depth

    if opts.verbose:
        print "Loading count table: ", opts.input_count_table
    genome_table = load_table(opts.input_count_table)

    if opts.verbose:
        print "Scaling the metagenome..."

    scaled_metagenomes = scale_metagenomes(genome_table, scaling_factors)

    if opts.verbose:
        print "Writing results to output file: ", opts.output_metagenome_table

    make_output_dir_for_file(opts.output_metagenome_table)
    write_biom_table(scaled_metagenomes, opts.output_metagenome_table)
Пример #4
0
def main():
    option_parser, opts, args =\
       parse_command_line_parameters(**script_info)
    if opts.verbose:
        print "Loading sequencing depth table: ",opts.input_seq_depth_file
    scaling_factors = {}
    for sample_id,depth in parse_seq_count_file(open(opts.input_seq_depth_file,'U')):
        scaling_factors[sample_id]=depth

    if opts.verbose:
        print "Loading count table: ", opts.input_count_table
    genome_table = load_table(opts.input_count_table)

    if opts.verbose:
        print "Scaling the metagenome..."

    scaled_metagenomes = scale_metagenomes(genome_table,scaling_factors)

    if opts.verbose:
        print "Writing results to output file: ",opts.output_metagenome_table

    make_output_dir_for_file(opts.output_metagenome_table)
    write_biom_table(scaled_metagenomes, opts.output_metagenome_table)
Пример #5
0
    else:
        #If we don't need confidence intervals, we can do a faster pure numpy prediction

        if opts.verbose:
            print "Predicting the metagenome..."
        predicted_metagenomes = predict_metagenomes(otu_table,
                                                    genome_table,
                                                    whole_round=round_flag)

    if opts.normalize_by_otu:
        #normalize (e.g. divide) the abundances by the sum of the OTUs per sample
        if opts.verbose:
            print "Normalizing functional abundances by sum of OTUs per sample"
        inverse_otu_sums = [1 / x for x in otu_table.sum(axis='sample')]
        scaling_factors = dict(zip(otu_table.ids(), inverse_otu_sums))
        predicted_metagenomes = scale_metagenomes(predicted_metagenomes,
                                                  scaling_factors)

    if opts.normalize_by_function:
        #normalize (e.g. divide) the abundances by the sum of the functions per sample
        #Sum of functional abundances per sample will equal 1 (e.g. relative abundance).
        if opts.verbose:
            print "Normalizing functional abundances by sum of functions per sample"
        predicted_metagenomes = predicted_metagenomes.norm(axis='sample',
                                                           inplace=False)


    write_metagenome_to_file(predicted_metagenomes,opts.output_metagenome_table,\
        opts.format_tab_delimited,"metagenome prediction",verbose=opts.verbose)

    if opts.with_confidence:
        output_path, output_filename = split(opts.output_metagenome_table)
Пример #6
0
        predicted_metagenomes_lower_CI_95,predicted_metagenomes_upper_CI_95=\
          predict_metagenome_variances(otu_table,genome_table,variance_table)
    else:
        #If we don't need confidence intervals, we can do a faster pure numpy prediction
        
        if opts.verbose:
            print "Predicting the metagenome..."
        predicted_metagenomes = predict_metagenomes(otu_table,genome_table)

    if opts.normalize_by_otu:
        #normalize (e.g. divide) the abundances by the sum of the OTUs per sample
        if opts.verbose:
            print "Normalizing functional abundances by sum of OTUs per sample"
        inverse_otu_sums = [1/x for x in otu_table.sum(axis='sample')] 
        scaling_factors = dict(zip(otu_table.SampleIds,inverse_otu_sums))
        predicted_metagenomes = scale_metagenomes(predicted_metagenomes,scaling_factors)

    if opts.normalize_by_function:
        #normalize (e.g. divide) the abundances by the sum of the functions per sample
        #Sum of functional abundances per sample will equal 1 (e.g. relative abundance).
        if opts.verbose:
            print "Normalizing functional abundances by sum of functions per sample"
        predicted_metagenomes = predicted_metagenomes.normObservationBySample()
        

    write_metagenome_to_file(predicted_metagenomes,opts.output_metagenome_table,\
        opts.format_tab_delimited,"metagenome prediction",verbose=opts.verbose)    
    
    if opts.with_confidence:
        output_path,output_filename = split(opts.output_metagenome_table)
        base_output_filename,ext = splitext(output_filename)