Пример #1
0
    def handle(self, checkpoint_ids, **options):
        from_checkpoint = checkpoint_ids[0]
        to_checkpoints = checkpoint_ids[1:]
        logging.info(
            f"Attempting to split {from_checkpoint} into {to_checkpoints}")

        if KafkaCheckpoint.objects.filter(
                checkpoint_id__in=to_checkpoints).exists():
            logging.error(
                f'Some of {to_checkpoints} already exist. Aborting pillow merging'
            )
            sys.exit(1)

        checkpoints = KafkaCheckpoint.objects.filter(
            checkpoint_id=from_checkpoint)
        new_checkpoints = []

        for checkpoint in checkpoints:
            for to_checkpoint in to_checkpoints:
                new_checkpoints.append(
                    KafkaCheckpoint(checkpoint_id=to_checkpoint,
                                    topic=checkpoint.topic,
                                    partition=checkpoint.partition,
                                    offset=checkpoint.offset))

        KafkaCheckpoint.objects.bulk_create(new_checkpoints)
    def handle(self, checkpoint_ids, **options):
        from_checkpoints = checkpoint_ids[:-1]
        to_checkpoint = checkpoint_ids[-1]
        logging.info(
            f"Attempting to merge {from_checkpoints} into {to_checkpoint}")

        if KafkaCheckpoint.objects.filter(
                checkpoint_id=to_checkpoint).exists():
            logging.error(
                f'{to_checkpoint} already exists. Aborting pillow merging')
            sys.exit(1)

        checkpoint_info = (KafkaCheckpoint.objects.filter(
            checkpoint_id__in=from_checkpoints).values(
                'topic', 'partition').annotate(Min('offset'), Max('offset'),
                                               Count('checkpoint_id')))
        number_checkpoints = checkpoint_info[0]['checkpoint_id__count']
        number_nonstandard_checkpoints = sum(
            1 for info in checkpoint_info
            if info['checkpoint_id__count'] != number_checkpoints)
        if number_nonstandard_checkpoints > 0:
            logger.error(
                f'Not all checkpoints have the same topics and partitions specified. '
                'Aborting pillow merging')
            sys.exit(2)

        minimum_difference = min(info['offset__max'] - info['offset__min']
                                 for info in checkpoint_info)
        if minimum_difference < 0:
            logger.error(
                "The minimum difference between checkpoints between pillows is less than zero"
            )
            sys.exit(4)

        maximum_difference = max(info['offset__max'] - info['offset__min']
                                 for info in checkpoint_info)

        if maximum_difference > 0:
            logger.warning(
                f"At least one checkpoint will need to reprocess {maximum_difference} changes"
            )
            confirm = input("Is this amount of reprocessing acceptable y/N?")
            if confirm != 'y':
                sys.exit(3)
        else:
            logger.info("All pillows have the same offsets")

        checkpoints = [
            KafkaCheckpoint(checkpoint_id=to_checkpoint,
                            topic=info['topic'],
                            partition=info['partition'],
                            offset=info['offset__min'])
            for info in checkpoint_info
        ]
        KafkaCheckpoint.objects.bulk_create(checkpoints)
        logger.info(f"{to_checkpoint} checkpoints created")
Пример #3
0
 def _get_checkpoints(self):
     return KafkaCheckpoint.get_or_create_for_checkpoint_id(self.checkpoint_id, self.topics)
Пример #4
0
 def _get_checkpoints(self):
     return KafkaCheckpoint.get_or_create_for_checkpoint_id(self.checkpoint_id, self.topics)