Пример #1
0
 def test_circ_mean(self):
     """Test function circ_mean."""
     x = [0.785, 1.570, 3.141, 0.839, 5.934]
     mu = circ_mean(x)
     # Compare with the CircStats MATLAB toolbox
     assert np.round(mu, 3) == 1.013
     # Wrong argument
     with pytest.raises(ValueError):
         circ_mean(x, w=[0.1, 0.2, 0.3])
Пример #2
0
 def test_circ_mean(self):
     """Test function circ_mean."""
     x = [0.785, 1.570, 3.141, 0.839, 5.934]
     x_nan = np.array([0.785, 1.570, 3.141, 0.839, 5.934, np.nan])
     # Compare with the CircStats MATLAB toolbox
     assert np.round(circ_mean(x), 3) == 1.013
     assert np.round(circ_mean(x_nan), 3) == 1.013
     # Binned data
     np.random.seed(123)
     nbins = 18  # Number of bins to divide the unit circle
     angles_bins = np.linspace(-np.pi, np.pi, nbins)
     # w represents the number of incidences per bins, or "weights".
     w = np.random.randint(low=0, high=5, size=angles_bins.size)
     assert round(circ_mean(angles_bins, w), 4) == -2.5355
Пример #3
0
 def assert_circmean(x, low, high, axis=-1):
     m1 = convert_angles(
         circmean(x, low=low, high=high, axis=axis, nan_policy='omit'),
         low, high)
     m2 = circ_mean(convert_angles(x, low, high), axis=axis)
     assert (np.round(m1, 4) == np.round(m2, 4)).all()
Пример #4
0
 def test_circ_mean(self):
     """Test function circ_mean."""
     x = [0.785, 1.570, 3.141, 0.839, 5.934]
     mu = circ_mean(x)
     # Compare with the CircStats MATLAB toolbox
     assert np.round(mu, 3) == 1.013