Пример #1
0
def predict_qs(model_name, terminal, voltages):
    workspace.ResetWorkspace()

    # requires voltages is an numpy array of size
    # (batch size, input_dimension)
    # the first dimension is Vg and the second dimenstion is Vd

    # preprocess the origin input and create adjoint input
    preproc_param = pickle.load(
        open(model_name + '_' + terminal + '_preproc_param.p', "rb"))
    dummy_qs = np.zeros(voltages[0].shape[0])
    voltages, dummy_qs = preproc.ac_qv_preproc(voltages, dummy_qs,
                                               preproc_param['scale'],
                                               preproc_param['vg_shift'])
    adjoint_input = np.ones((voltages.shape[0], 1))
    # Expand dimensions of input and set data type of inputs
    origin_input = np.expand_dims(voltages, axis=1)
    origin_input = origin_input.astype(np.float32)
    adjoint_input = adjoint_input.astype(np.float32)

    workspace.FeedBlob('DBInput_train/origin_input', voltages)
    workspace.FeedBlob('DBInput_train/adjoint_input', adjoint_input)
    pred_net = exporter.load_net(model_name + '_init', model_name + '_predict')
    workspace.RunNet(pred_net)

    qs = np.squeeze(workspace.FetchBlob('origin/NanCheck/origin_pred'))
    gradients = np.squeeze(workspace.FetchBlob('adjoint/fc0/output'))
    restore_integral_func, restore_gradient_func = preproc.get_restore_q_func(
        preproc_param['scale'], preproc_param['vg_shift'])
    original_qs = restore_integral_func(qs)
    original_gradients = restore_gradient_func(gradients)
    return original_qs, original_gradients
Пример #2
0
def predict_ids(model_name, vg, vd):
    workspace.ResetWorkspace()

    # preproc the input
    vg = vg.astype(np.float32)
    vd = vd.astype(np.float32)
    #if len(self.preproc_param) == 0:
    preproc_param = pickle.load(open(model_name + '_preproc_param.p', "rb"))
    dummy_ids = np.zeros(len(vg))
    preproc_data_arrays = preproc.dc_iv_preproc(
        vg,
        vd,
        dummy_ids,
        preproc_param['scale'],
        preproc_param['vg_shift'],
    )
    # print(preproc_data_arrays[0].shape)
    _preproc_data_arrays = [
        np.expand_dims(x, axis=1) if len(x.shape) < 2 else x
        for x in preproc_data_arrays
    ]

    workspace.FeedBlob('DBInput_train/sig_input', _preproc_data_arrays[0])
    workspace.FeedBlob('DBInput_train/tanh_input', _preproc_data_arrays[1])
    pred_net = exporter.load_net(model_name + '_init', model_name + '_predict')

    workspace.RunNet(pred_net)

    _ids = np.squeeze(workspace.FetchBlob('prediction'))

    restore_id_func, get_restore_id_grad_func = preproc.get_restore_id_func(
        preproc_param['scale'])
    ids = restore_id_func(_ids)
    return ids
Пример #3
0
def predict_ids_grads(model_name, vg, vd):
    workspace.ResetWorkspace()

    # preproc the input
    vg = vg.astype(np.float32)
    vd = vd.astype(np.float32)
    #if len(self.preproc_param) == 0:
    preproc_param = pickle.load(open(model_name + '_preproc_param.p', "rb"))
    dummy_ids = np.zeros(len(vg))
    preproc_data_arrays = preproc.dc_iv_preproc(
        vg,
        vd,
        dummy_ids,
        preproc_param['scale'],
        preproc_param['vg_shift'],
    )
    _preproc_data_arrays = [
        np.expand_dims(x, axis=1) for x in preproc_data_arrays
    ]

    workspace.FeedBlob('DBInput_train/sig_input', _preproc_data_arrays[0])
    workspace.FeedBlob('DBInput_train/tanh_input', _preproc_data_arrays[1])
    adjoint_input = np.ones((_preproc_data_arrays[0].shape[0], 1))
    workspace.FeedBlob('adjoint_input', adjoint_input)
    pred_net = exporter.load_net(model_name + '_init', model_name + '_predict')

    workspace.RunNet(pred_net)

    _ids = np.squeeze(workspace.FetchBlob('origin/Mul/origin_pred'))
    _sig_grad = np.squeeze(
        workspace.FetchBlob('adjoint/sig_fc_layer_0/output'))
    _tanh_grad = np.squeeze(
        workspace.FetchBlob('adjoint/tanh_fc_layer_0/output'))

    restore_id_func, get_restore_id_grad_func = preproc.get_restore_id_func(
        preproc_param['scale'])
    ids = restore_id_func(_ids)
    sig_grad, tanh_grad = get_restore_id_grad_func(_sig_grad, _tanh_grad)
    return ids, sig_grad, tanh_grad