Пример #1
0
    def _set_xh_vect(self, spin_line, col, spin, spin_id1=None, spin_id2=None, verbosity=1):
        """Set the unit vectors.

        @param spin_line:   The line of data for a single spin.
        @type spin_line:    list of str
        @param col:         The column indices.
        @type col:          dict of int
        @param spin:        The spin container.
        @type spin:         SpinContainer instance
        @keyword spin_id1:  The ID string of the first spin.
        @type spin_id1:     str
        @keyword spin_id2:  The ID string of the second spin.
        @type spin_id2:     str
        @keyword verbosity: A variable specifying the amount of information to print.  The higher the value, the greater the verbosity.
        @type verbosity:    int
        """

        # Get the interatomic data container.
        interatom = return_interatom(spin_id1=spin_id1, spin_id2=spin_id2)
        if interatom == None:
            raise RelaxError("No interatomic interaction between spins '%s' and '%s' could be found." (spin_id1, spin_id2))

        # The vector.
        vector = eval(spin_line[col['xh_vect']])
        if vector:
            # numpy array format.
            try:
                vector = array(vector, float64)
            except:
                raise RelaxError("The XH unit vector " + spin_line[col['xh_vect']] + " is invalid.")

            # Set the vector.
            interatom.vector = vector
Пример #2
0
    def return_error(self, data_id):
        """Return the RDC or PCS error structure.

        @param data_id:     The data set as yielded by the base_data_loop() generator method.
        @type data_id:      list of str
        @return:            The array of RDC or PCS error values.
        @rtype:             list of float
        """

        # Initialise the MC data structure.
        mc_errors = []

        # The RDC data.
        if data_id[0] == 'rdc':
            # Unpack the set.
            data_type, spin_hash1, spin_hash2, align_id = data_id

            # Get the interatomic data container.
            interatom = return_interatom(spin_hash1=spin_hash1,
                                         spin_hash2=spin_hash2)

            # Do errors exist?
            if not hasattr(interatom, 'rdc_err'):
                raise RelaxError(
                    "The RDC errors are missing for interatomic data container between spins '%s' and '%s'."
                    % (spin_id1, spin_id2))

            # Handle missing data.
            if align_id not in interatom.rdc_err:
                mc_errors.append(None)

            # Append the data.
            else:
                mc_errors.append(interatom.rdc_err[align_id])

        # The PCS data.
        elif data_id[0] == 'pcs':
            # Unpack the set.
            data_type, spin_id, align_id = data_id

            # Get the spin container.
            spin = return_spin(spin_id=spin_id)

            # Do errors exist?
            if not hasattr(spin, 'pcs_err'):
                raise RelaxError("The PCS errors are missing for spin '%s'." %
                                 spin_id)

            # Handle missing data.
            if align_id not in spin.pcs_err:
                mc_errors.append(None)

            # Append the data.
            else:
                mc_errors.append(spin.pcs_err[align_id])

        # Return the errors.
        return mc_errors
Пример #3
0
    def create_mc_data(self, data_id=None):
        """Create the Monte Carlo data by back calculating the RDCs or PCSs.

        @keyword data_id:   The data set as yielded by the base_data_loop() generator method.
        @type data_id:      list of str
        @return:            The Monte Carlo simulation data.
        @rtype:             list of floats
        """

        # Initialise the MC data structure.
        mc_data = []

        # The RDC data.
        if data_id[0] == 'rdc':
            # Unpack the set.
            data_type, spin_hash1, spin_hash2, align_id = data_id

            # Get the interatomic data container.
            interatom = return_interatom(spin_hash1=spin_hash1,
                                         spin_hash2=spin_hash2)

            # Does back-calculated data exist?
            if not hasattr(interatom, 'rdc_bc'):
                self.calculate()

            # The data.
            if not hasattr(interatom,
                           'rdc_bc') or align_id not in interatom.rdc_bc:
                data = None
            else:
                data = interatom.rdc_bc[align_id]

            # Append the data.
            mc_data.append(data)

        # The PCS data.
        elif data_id[0] == 'pcs':
            # Unpack the set.
            data_type, spin_id, align_id = data_id

            # Get the spin container.
            spin = return_spin(spin_id=spin_id)

            # Does back-calculated data exist?
            if not hasattr(spin, 'pcs_bc'):
                self.calculate()

            # The data.
            if not hasattr(spin, 'pcs_bc') or align_id not in spin.pcs_bc:
                data = None
            else:
                data = spin.pcs_bc[align_id]

            # Append the data.
            mc_data.append(data)

        # Return the data.
        return mc_data
Пример #4
0
    def create_mc_data(self, data_id=None):
        """Create the Monte Carlo data by back calculating the RDCs or PCSs.

        @keyword data_id:   The data set as yielded by the base_data_loop() generator method.
        @type data_id:      list of str
        @return:            The Monte Carlo simulation data.
        @rtype:             list of floats
        """

        # Initialise the MC data structure.
        mc_data = []

        # The RDC data.
        if data_id[0] == 'rdc':
            # Unpack the set.
            data_type, spin_id1, spin_id2, align_id = data_id

            # Get the interatomic data container.
            interatom = return_interatom(spin_id1, spin_id2)

            # Does back-calculated data exist?
            if not hasattr(interatom, 'rdc_bc'):
                self.calculate()

            # The data.
            if not hasattr(interatom, 'rdc_bc') or align_id not in interatom.rdc_bc:
                data = None
            else:
                data = interatom.rdc_bc[align_id]

            # Append the data.
            mc_data.append(data)

        # The PCS data.
        elif data_id[0] == 'pcs':
            # Unpack the set.
            data_type, spin_id, align_id = data_id

            # Get the spin container.
            spin = return_spin(spin_id)

            # Does back-calculated data exist?
            if not hasattr(spin, 'pcs_bc'):
                self.calculate()

            # The data.
            if not hasattr(spin, 'pcs_bc') or align_id not in spin.pcs_bc:
                data = None
            else:
                data = spin.pcs_bc[align_id]

            # Append the data.
            mc_data.append(data)

        # Return the data.
        return mc_data
Пример #5
0
    def return_error(self, data_id):
        """Return the RDC or PCS error structure.

        @param data_id:     The data set as yielded by the base_data_loop() generator method.
        @type data_id:      list of str
        @return:            The array of RDC or PCS error values.
        @rtype:             list of float
        """

        # Initialise the MC data structure.
        mc_errors = []

        # The RDC data.
        if data_id[0] == 'rdc':
            # Unpack the set.
            data_type, spin_id1, spin_id2, align_id = data_id

            # Get the interatomic data container.
            interatom = return_interatom(spin_id1, spin_id2)

            # Do errors exist?
            if not hasattr(interatom, 'rdc_err'):
                raise RelaxError("The RDC errors are missing for interatomic data container between spins '%s' and '%s'." % (spin_id1, spin_id2))

            # Handle missing data.
            if align_id not in interatom.rdc_err:
                mc_errors.append(None)

            # Append the data.
            else:
                mc_errors.append(interatom.rdc_err[align_id])

        # The PCS data.
        elif data_id[0] == 'pcs':
            # Unpack the set.
            data_type, spin_id, align_id = data_id

            # Get the spin container.
            spin = return_spin(spin_id)

            # Do errors exist?
            if not hasattr(spin, 'pcs_err'):
                raise RelaxError("The PCS errors are missing for spin '%s'." % spin_id)

            # Handle missing data.
            if align_id not in spin.pcs_err:
                mc_errors.append(None)

            # Append the data.
            else:
                mc_errors.append(spin.pcs_err[align_id])

        # Return the errors.
        return mc_errors
Пример #6
0
def set_xh_vect(spin_line,
                col,
                spin,
                spin_id1=None,
                spin_id2=None,
                spin_hash1=None,
                spin_hash2=None,
                verbosity=1):
    """Set the unit vectors.

    @param spin_line:       The line of data for a single spin.
    @type spin_line:        list of str
    @param col:             The column indices.
    @type col:              dict of int
    @param spin:            The spin container.
    @type spin:             SpinContainer instance
    @keyword spin_id1:      The ID string of the first spin.
    @type spin_id1:         str
    @keyword spin_id2:      The ID string of the second spin.
    @type spin_id2:         str
    @keyword spin_hash1:    The unique hash of the first spin.
    @type spin_hash1:       str
    @keyword spin_hash2:    The unique hash of the second spin.
    @type spin_hash2:       str
    @keyword verbosity:     A variable specifying the amount of information to print.  The higher the value, the greater the verbosity.
    @type verbosity:        int
    """

    # Get the interatomic data container.
    interatom = return_interatom(spin_hash1=spin_hash1, spin_hash2=spin_hash2)
    if interatom == None:
        raise RelaxError(
            "No interatomic interaction between spins '%s' and '%s' could be found." (
                spin_id1, spin_id2))

    # The vector.
    vector = eval(spin_line[col['xh_vect']])
    if vector:
        # numpy array format.
        try:
            vector = array(vector, float64)
        except:
            raise RelaxError("The XH unit vector " +
                             spin_line[col['xh_vect']] + " is invalid.")

        # Set the vector.
        interatom.vector = vector
Пример #7
0
    def sim_pack_data(self, data_id, sim_data):
        """Pack the Monte Carlo simulation data.

        @param data_id:     The data set as yielded by the base_data_loop() generator method.
        @type data_id:      list of str
        @param sim_data:    The Monte Carlo simulation data.
        @type sim_data:     list of float
        """

        # The RDC data.
        if data_id[0] == 'rdc':
            # Unpack the set.
            data_type, spin_hash1, spin_hash2, align_id = data_id

            # Get the interatomic data container.
            interatom = return_interatom(spin_hash1=spin_hash1,
                                         spin_hash2=spin_hash2)

            # Initialise.
            if not hasattr(interatom, 'rdc_sim'):
                interatom.rdc_sim = {}

            # Store the data structure.
            interatom.rdc_sim[align_id] = []
            for i in range(cdp.sim_number):
                interatom.rdc_sim[align_id].append(sim_data[i][0])

        # The PCS data.
        elif data_id[0] == 'pcs':
            # Unpack the set.
            data_type, spin_id, align_id = data_id

            # Get the spin container.
            spin = return_spin(spin_id=spin_id)

            # Initialise.
            if not hasattr(spin, 'pcs_sim'):
                spin.pcs_sim = {}

            # Store the data structure.
            spin.pcs_sim[data_id[2]] = []
            for i in range(cdp.sim_number):
                spin.pcs_sim[data_id[2]].append(sim_data[i][0])
Пример #8
0
def setup_pseudoatom_rdc():
    """Make sure that the interatom system is properly set up for pseudo-atoms and RDCs.

    Interatomic data containers between the non-pseudo-atom and the pseudo-atom members will be deselected.
    """

    # Loop over all interatomic data containers.
    for interatom in interatomic_loop():
        # Get the spins.
        spin1 = return_spin(interatom.spin_id1)
        spin2 = return_spin(interatom.spin_id2)

        # Checks.
        flag1 = is_pseudoatom(spin1)
        flag2 = is_pseudoatom(spin2)

        # No pseudo-atoms, so do nothing.
        if not (flag1 or flag2):
            continue

        # Both are pseudo-atoms.
        if flag1 and flag2:
            warn(RelaxWarning("Support for both spins being in a dipole pair being pseudo-atoms is not implemented yet, deselecting the interatomic data container for the spin pair '%s' and '%s'." % (interatom.spin_id1, interatom.spin_id2)))
            interatom.select = False

        # Alias the pseudo and normal atoms.
        pseudospin = spin1
        base_spin_id = interatom.spin_id2
        pseudospin_id = interatom.spin_id1
        if flag2:
            pseudospin = spin2
            base_spin_id = interatom.spin_id1
            pseudospin_id = interatom.spin_id2

        # Loop over the atoms of the pseudo-atom.
        for spin, spin_id in pseudoatom_loop(pseudospin, return_id=True):
            # Get the corresponding interatomic data container.
            pseudo_interatom = return_interatom(spin_id1=spin_id, spin_id2=base_spin_id)

            # Deselect if needed.
            if pseudo_interatom.select:
                warn(RelaxWarning("Deselecting the interatomic data container for the spin pair '%s' and '%s' as it is part of the pseudo-atom system of the spin pair '%s' and '%s'." % (pseudo_interatom.spin_id1, pseudo_interatom.spin_id2, base_spin_id, pseudospin_id)))
                pseudo_interatom.select = False
Пример #9
0
    def sim_pack_data(self, data_id, sim_data):
        """Pack the Monte Carlo simulation data.

        @param data_id:     The data set as yielded by the base_data_loop() generator method.
        @type data_id:      list of str
        @param sim_data:    The Monte Carlo simulation data.
        @type sim_data:     list of float
        """

        # The RDC data.
        if data_id[0] == 'rdc':
            # Unpack the set.
            data_type, spin_id1, spin_id2, align_id = data_id

            # Get the interatomic data container.
            interatom = return_interatom(spin_id1, spin_id2)

            # Initialise.
            if not hasattr(interatom, 'rdc_sim'):
                interatom.rdc_sim = {}
                    
            # Store the data structure.
            interatom.rdc_sim[align_id] = []
            for i in range(cdp.sim_number):
                interatom.rdc_sim[align_id].append(sim_data[i][0])

        # The PCS data.
        elif data_id[0] == 'pcs':
            # Unpack the set.
            data_type, spin_id, align_id = data_id

            # Get the spin container.
            spin = return_spin(spin_id)

            # Initialise.
            if not hasattr(spin, 'pcs_sim'):
                spin.pcs_sim = {}
                
            # Store the data structure.
            spin.pcs_sim[data_id[2]] = []
            for i in range(cdp.sim_number):
                spin.pcs_sim[data_id[2]].append(sim_data[i][0])
Пример #10
0
    if file[:3] == 'pcs':
        # Load the original file.
        pcs.read(align_id=file, file='%s.txt'%file, dir='../free_rotor/', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)

        # Delete the data.
        for spin_id in missing_pcs[file]:
            # Get the container.
            spin = return_spin(spin_id)

            # Delete the data.
            del spin.pcs[file]

        # Write data to file.
        pcs.write(align_id=file, file='%s.txt'%file, dir='.', force=True)

    # RDC data.
    elif file[:3] == 'rdc':
        # Load the original file.
        rdc.read(align_id=file, file='%s.txt'%file, dir='../free_rotor/', data_col=3, error_col=4)

        # Delete the data.
        for spin_id1, spin_id2 in missing_rdc[file]:
            # Get the container.
            interatom = return_interatom(spin_id1, spin_id2)

            # Delete the data.
            del interatom.rdc[file]

        # Write data to file.
        rdc.write(align_id=file, file='%s.txt'%file, dir='.', force=True)
Пример #11
0
def read(file=None, dir=None, file_data=None, spin_id1_col=None, spin_id2_col=None, data_col=None, error_col=None, sign_col=None, sep=None):
    """Read the J coupling data from file.

    @keyword file:          The name of the file to open.
    @type file:             str
    @keyword dir:           The directory containing the file (defaults to the current directory if None).
    @type dir:              str or None
    @keyword file_data:     An alternative to opening a file, if the data already exists in the correct format.  The format is a list of lists where the first index corresponds to the row and the second the column.
    @type file_data:        list of lists
    @keyword spin_id1_col:  The column containing the spin ID strings of the first spin.
    @type spin_id1_col:     int
    @keyword spin_id2_col:  The column containing the spin ID strings of the second spin.
    @type spin_id2_col:     int
    @keyword data_col:      The column containing the J coupling data in Hz.
    @type data_col:         int or None
    @keyword error_col:     The column containing the J coupling errors.
    @type error_col:        int or None
    @keyword sign_col:      The optional column containing the sign of the J coupling.
    @type sign_col:         int or None
    @keyword sep:           The column separator which, if None, defaults to whitespace.
    @type sep:              str or None
    """

    # Check the pipe setup.
    check_pipe_setup(sequence=True)

    # Either the data or error column must be supplied.
    if data_col == None and error_col == None:
        raise RelaxError("One of either the data or error column must be supplied.")

    # Extract the data from the file, and remove comments and blank lines.
    file_data = extract_data(file, dir, sep=sep)
    file_data = strip(file_data, comments=True)

    # Loop over the J coupling data.
    data = []
    for line in file_data:
        # Invalid columns.
        if spin_id1_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no first spin ID column can be found." % line))
            continue
        if spin_id2_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no second spin ID column can be found." % line))
            continue
        if data_col and data_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no data column can be found." % line))
            continue
        if error_col and error_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no error column can be found." % line))
            continue
        if sign_col and sign_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no sign column can be found." % line))
            continue

        # Unpack.
        spin_id1 = line[spin_id1_col-1]
        spin_id2 = line[spin_id2_col-1]
        value = None
        if data_col:
            value = line[data_col-1]
        error = None
        if error_col:
            error = line[error_col-1]
        sign = None
        if sign_col:
            sign = line[sign_col-1]

        # Convert the spin IDs.
        if spin_id1[0] in ["\"", "\'"]:
            spin_id1 = eval(spin_id1)
        if spin_id2[0] in ["\"", "\'"]:
            spin_id2 = eval(spin_id2)

        # Convert and check the value.
        if value == 'None':
            value = None
        if value != None:
            try:
                value = float(value)
            except ValueError:
                warn(RelaxWarning("The J coupling value of the line %s is invalid." % line))
                continue

        # The sign data.
        if sign == 'None':
            sign = None
        if sign != None:
            try:
                sign = float(sign)
            except ValueError:
                warn(RelaxWarning("The J coupling sign of the line %s is invalid." % line))
                continue
            if sign not in [1.0, -1.0]:
                warn(RelaxWarning("The J coupling sign of the line %s is invalid." % line))
                continue

        # Convert and check the error.
        if error == 'None':
            error = None
        if error != None:
            try:
                error = float(error)
            except ValueError:
                warn(RelaxWarning("The error value of the line %s is invalid." % line))
                continue

        # Get the spins.
        spin1 = return_spin(spin_id=spin_id1)
        spin2 = return_spin(spin_id=spin_id2)

        # Check the spin IDs.
        if not spin1:
            warn(RelaxWarning("The spin ID '%s' cannot be found in the current data pipe, skipping the data %s." % (spin_id1, line)))
            continue
        if not spin2:
            warn(RelaxWarning("The spin ID '%s' cannot be found in the current data pipe, skipping the data %s." % (spin_id2, line)))
            continue

        # Test the error value (cannot be 0.0).
        if error == 0.0:
            raise RelaxError("An invalid error value of zero has been encountered.")

        # Get the interatomic data container.
        interatom = return_interatom(spin_hash1=spin1._hash, spin_hash2=spin2._hash)

        # Create the container if needed.
        if interatom == None:
            interatom = create_interatom(spin_id1=spin_id1, spin_id2=spin_id2)

        # Add the data.
        if data_col:
            # Sign conversion.
            if sign != None:
                value = value * sign

            # Add the value.
            interatom.j_coupling = value

        # Add the error.
        if error_col:
            interatom.j_coupling_err = error

        # Append the data for printout.
        data.append([spin_id1, spin_id2])
        if is_float(value):
            data[-1].append("%20.15f" % value)
        else:
            data[-1].append("%20s" % value)
        if is_float(error):
            data[-1].append("%20.15f" % error)
        else:
            data[-1].append("%20s" % error)

    # No data, so fail hard!
    if not len(data):
        raise RelaxError("No J coupling data could be extracted.")

    # Print out.
    print("The following J coupling have been loaded into the relax data store:\n")
    write_data(out=sys.stdout, headings=["Spin_ID1", "Spin_ID2", "Value", "Error"], data=data)
Пример #12
0
def read(file=None, dir=None, file_data=None, spin_id1_col=None, spin_id2_col=None, data_col=None, error_col=None, sign_col=None, sep=None):
    """Read the J coupling data from file.

    @keyword file:          The name of the file to open.
    @type file:             str
    @keyword dir:           The directory containing the file (defaults to the current directory if None).
    @type dir:              str or None
    @keyword file_data:     An alternative to opening a file, if the data already exists in the correct format.  The format is a list of lists where the first index corresponds to the row and the second the column.
    @type file_data:        list of lists
    @keyword spin_id1_col:  The column containing the spin ID strings of the first spin.
    @type spin_id1_col:     int
    @keyword spin_id2_col:  The column containing the spin ID strings of the second spin.
    @type spin_id2_col:     int
    @keyword data_col:      The column containing the J coupling data in Hz.
    @type data_col:         int or None
    @keyword error_col:     The column containing the J coupling errors.
    @type error_col:        int or None
    @keyword sign_col:      The optional column containing the sign of the J coupling.
    @type sign_col:         int or None
    @keyword sep:           The column separator which, if None, defaults to whitespace.
    @type sep:              str or None
    """

    # Check the pipe setup.
    check_pipe_setup(sequence=True)

    # Either the data or error column must be supplied.
    if data_col == None and error_col == None:
        raise RelaxError("One of either the data or error column must be supplied.")

    # Extract the data from the file, and remove comments and blank lines.
    file_data = extract_data(file, dir, sep=sep)
    file_data = strip(file_data, comments=True)

    # Loop over the J coupling data.
    data = []
    for line in file_data:
        # Invalid columns.
        if spin_id1_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no first spin ID column can be found." % line))
            continue
        if spin_id2_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no second spin ID column can be found." % line))
            continue
        if data_col and data_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no data column can be found." % line))
            continue
        if error_col and error_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no error column can be found." % line))
            continue
        if sign_col and sign_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no sign column can be found." % line))
            continue

        # Unpack.
        spin_id1 = line[spin_id1_col-1]
        spin_id2 = line[spin_id2_col-1]
        value = None
        if data_col:
            value = line[data_col-1]
        error = None
        if error_col:
            error = line[error_col-1]
        sign = None
        if sign_col:
            sign = line[sign_col-1]

        # Convert the spin IDs.
        if spin_id1[0] in ["\"", "\'"]:
            spin_id1 = eval(spin_id1)
        if spin_id2[0] in ["\"", "\'"]:
            spin_id2 = eval(spin_id2)

        # Convert and check the value.
        if value == 'None':
            value = None
        if value != None:
            try:
                value = float(value)
            except ValueError:
                warn(RelaxWarning("The J coupling value of the line %s is invalid." % line))
                continue

        # The sign data.
        if sign == 'None':
            sign = None
        if sign != None:
            try:
                sign = float(sign)
            except ValueError:
                warn(RelaxWarning("The J coupling sign of the line %s is invalid." % line))
                continue
            if sign not in [1.0, -1.0]:
                warn(RelaxWarning("The J coupling sign of the line %s is invalid." % line))
                continue

        # Convert and check the error.
        if error == 'None':
            error = None
        if error != None:
            try:
                error = float(error)
            except ValueError:
                warn(RelaxWarning("The error value of the line %s is invalid." % line))
                continue

        # Get the spins.
        spin1 = return_spin(spin_id1)
        spin2 = return_spin(spin_id2)

        # Check the spin IDs.
        if not spin1:
            warn(RelaxWarning("The spin ID '%s' cannot be found in the current data pipe, skipping the data %s." % (spin_id1, line)))
            continue
        if not spin2:
            warn(RelaxWarning("The spin ID '%s' cannot be found in the current data pipe, skipping the data %s." % (spin_id2, line)))
            continue

        # Test the error value (cannot be 0.0).
        if error == 0.0:
            raise RelaxError("An invalid error value of zero has been encountered.")

        # Get the interatomic data container.
        interatom = return_interatom(spin_id1, spin_id2)

        # Create the container if needed.
        if interatom == None:
            interatom = create_interatom(spin_id1=spin_id1, spin_id2=spin_id2)

        # Add the data.
        if data_col:
            # Sign conversion.
            if sign != None:
                value = value * sign

            # Add the value.
            interatom.j_coupling = value

        # Add the error.
        if error_col:
            interatom.j_coupling_err = error

        # Append the data for printout.
        data.append([spin_id1, spin_id2])
        if is_float(value):
            data[-1].append("%20.15f" % value)
        else:
            data[-1].append("%20s" % value)
        if is_float(error):
            data[-1].append("%20.15f" % error)
        else:
            data[-1].append("%20s" % error)

    # No data, so fail hard!
    if not len(data):
        raise RelaxError("No J coupling data could be extracted.")

    # Print out.
    print("The following J coupling have been loaded into the relax data store:\n")
    write_data(out=sys.stdout, headings=["Spin_ID1", "Spin_ID2", "Value", "Error"], data=data)
Пример #13
0
            spin = return_spin(spin_id=spin_id)

            # Delete the data.
            del spin.pcs[file]

        # Write data to file.
        pcs.write(align_id=file, file='%s.txt' % file, dir='.', force=True)

    # RDC data.
    elif file[:3] == 'rdc':
        # Load the original file.
        rdc.read(align_id=file,
                 file='%s.txt' % file,
                 dir='../free_rotor/',
                 data_col=3,
                 error_col=4)

        # Delete the data.
        for spin_id1, spin_id2 in missing_rdc[file]:
            # Get the container.
            spin1 = return_spin(spin_id=spin_id1)
            spin2 = return_spin(spin_id=spin_id2)
            interatom = return_interatom(spin_hash1=spin1._hash,
                                         spin_hash1=spin2._hash)

            # Delete the data.
            del interatom.rdc[file]

        # Write data to file.
        rdc.write(align_id=file, file='%s.txt' % file, dir='.', force=True)
Пример #14
0
def bmrb_read(star, sample_conditions=None):
    """Read the relaxation data from the NMR-STAR dictionary object.

    @param star:                The NMR-STAR dictionary object.
    @type star:                 NMR_STAR instance
    @keyword sample_conditions: The sample condition label to read.  Only one sample condition can be read per data pipe.
    @type sample_conditions:    None or str
    """

    # Get the relaxation data.
    for data in star.relaxation.loop():
        # Sample conditions do not match (remove the $ sign).
        if 'sample_cond_list_label' in data and sample_conditions and data[
                'sample_cond_list_label'].replace('$',
                                                  '') != sample_conditions:
            continue

        # Create the labels.
        ri_type = data['data_type']
        frq = float(data['frq']) * 1e6

        # Round the label to the nearest factor of 10.
        frq_label = create_frq_label(float(data['frq']) * 1e6)

        # The ID string.
        ri_id = "%s_%s" % (ri_type, frq_label)

        # The number of spins.
        N = bmrb.num_spins(data)

        # No data in the saveframe.
        if N == 0:
            continue

        # The molecule names.
        mol_names = bmrb.molecule_names(data, N)

        # Generate the sequence if needed.
        bmrb.generate_sequence(N,
                               spin_names=data['atom_names'],
                               res_nums=data['res_nums'],
                               res_names=data['res_names'],
                               mol_names=mol_names,
                               isotopes=data['isotope'],
                               elements=data['atom_types'])

        # The attached protons.
        if 'atom_names_2' in data:
            # Generate the proton spins.
            bmrb.generate_sequence(N,
                                   spin_names=data['atom_names_2'],
                                   res_nums=data['res_nums'],
                                   res_names=data['res_names'],
                                   mol_names=mol_names,
                                   isotopes=data['isotope_2'],
                                   elements=data['atom_types_2'])

            # Define the dipolar interaction.
            for i in range(len(data['atom_names'])):
                # The spin IDs.
                spin_id1 = generate_spin_id_unique(
                    spin_name=data['atom_names'][i],
                    res_num=data['res_nums'][i],
                    res_name=data['res_names'][i],
                    mol_name=mol_names[i])
                spin_id2 = generate_spin_id_unique(
                    spin_name=data['atom_names_2'][i],
                    res_num=data['res_nums'][i],
                    res_name=data['res_names'][i],
                    mol_name=mol_names[i])

                # Check if the container exists.
                spin1 = return_spin(spin_id=spin_id1)
                spin2 = return_spin(spin_id=spin_id2)
                if return_interatom(spin_hash1=spin1._hash,
                                    spin_hash2=spin2._hash):
                    continue

                # Define.
                define_dipole_pair(spin_id1=spin_id1,
                                   spin_id2=spin_id2,
                                   spin1=spin1,
                                   spin2=spin2,
                                   verbose=False)

        # The data and error.
        vals = data['data']
        errors = data['errors']
        if vals == None:
            vals = [None] * N
        if errors == None:
            errors = [None] * N

        # Data transformation.
        if vals != None and 'units' in data:
            # Scaling.
            if data['units'] == 'ms':
                # Loop over the data.
                for i in range(N):
                    # The value.
                    if vals[i] != None:
                        vals[i] = vals[i] / 1000

                    # The error.
                    if errors[i] != None:
                        errors[i] = errors[i] / 1000

            # Invert.
            if data['units'] in ['s', 'ms']:
                # Loop over the data.
                for i in range(len(vals)):
                    # The value.
                    if vals[i] != None:
                        vals[i] = 1.0 / vals[i]

                    # The error.
                    if vals[i] != None and errors[i] != None:
                        errors[i] = errors[i] * vals[i]**2

        # Pack the data.
        pack_data(ri_id,
                  ri_type,
                  frq,
                  vals,
                  errors,
                  mol_names=mol_names,
                  res_nums=data['res_nums'],
                  res_names=data['res_names'],
                  spin_nums=None,
                  spin_names=data['atom_names'],
                  gen_seq=True,
                  verbose=False)

        # Store the temperature calibration and control.
        if data['temp_calibration']:
            temp_calibration(ri_id=ri_id, method=data['temp_calibration'])
        if data['temp_control']:
            temp_control(ri_id=ri_id, method=data['temp_control'])

        # Peak intensity type.
        if data['peak_intensity_type']:
            peak_intensity_type(ri_id=ri_id, type=data['peak_intensity_type'])
Пример #15
0
def return_rdc_data(sim_index=None):
    """Set up the data structures for optimisation using RDCs as base data sets.

    @keyword sim_index: The index of the simulation to optimise.  This should be None if normal optimisation is desired.
    @type sim_index:    None or int
    @return:            The assembled data structures for using RDCs as the base data for optimisation.  These include:
                            - rdc, the RDC values.
                            - rdc_err, the RDC errors.
                            - rdc_weight, the RDC weights.
                            - vectors, the interatomic vectors (pseudo-atom dependent).
                            - rdc_const, the dipolar constants (pseudo-atom dependent).
                            - absolute, the absolute value flags (as 1's and 0's).
                            - T_flags, the flags for T = J+D type data (as 1's and 0's).
                            - j_couplings, the J coupling values if the RDC data type is set to T = J+D.
                            - pseudo_flags, the list of flags indicating if the interatomic data contains a pseudo-atom (as 1's and 0's).
    @rtype:             tuple of (numpy rank-2 float64 array, numpy rank-2 float64 array, numpy rank-2 float64 array, list of numpy rank-3 float64 arrays, list of lists of floats, numpy rank-2 int32 array, numpy rank-2 int32 array, numpy rank-2 float64 array, numpy rank-1 int32 array)
    """

    # Sort out pseudo-atoms first.  This only needs to be called once.
    setup_pseudoatom_rdc()

    # Initialise.
    rdc = []
    rdc_err = []
    rdc_weight = []
    unit_vect = []
    rdc_const = []
    absolute = []
    T_flags = []
    j_couplings = []
    pseudo_flags = []

    # The unit vectors, RDC constants, and J couplings.
    for interatom in interatomic_loop():
        # Get the spins.
        spin1 = return_spin(interatom.spin_id1)
        spin2 = return_spin(interatom.spin_id2)

        # RDC checks.
        if not check_rdcs(interatom):
            continue

        # Gyromagnetic ratios.
        g1 = return_gyromagnetic_ratio(spin1.isotope)
        g2 = return_gyromagnetic_ratio(spin2.isotope)

        # Pseudo atoms.
        if is_pseudoatom(spin1) and is_pseudoatom(spin2):
            raise RelaxError("Support for both spins being in a dipole pair being pseudo-atoms is not implemented yet.")
        if is_pseudoatom(spin1) or is_pseudoatom(spin2):
            # Set the flag.
            pseudo_flags.append(1)

            # Alias the pseudo and normal atoms.
            if is_pseudoatom(spin1):
                pseudospin = spin1
                base_spin = spin2
                pseudospin_id = interatom.spin_id1
                base_spin_id = interatom.spin_id2
            else:
                pseudospin = spin2
                base_spin = spin1
                pseudospin_id = interatom.spin_id2
                base_spin_id = interatom.spin_id1

            # Loop over the atoms of the pseudo-atom, storing the data.
            pseudo_unit_vect = []
            pseudo_rdc_const = []
            for spin, spin_id in pseudoatom_loop(pseudospin, return_id=True):
                # Get the corresponding interatomic data container.
                pseudo_interatom = return_interatom(spin_id1=spin_id, spin_id2=base_spin_id)

                # Check.
                if pseudo_interatom == None:
                    raise RelaxError("The interatomic data container between the spins '%s' and '%s' for the pseudo-atom '%s' is not defined." % (base_spin_id, spin_id, pseudospin_id))

                # Add the vectors.
                if is_float(interatom.vector[0]):
                    pseudo_unit_vect.append([pseudo_interatom.vector])
                else:
                    pseudo_unit_vect.append(pseudo_interatom.vector)

                # Calculate the RDC dipolar constant (in Hertz, and the 3 comes from the alignment tensor), and append it to the list.
                pseudo_rdc_const.append(3.0/(2.0*pi) * dipolar_constant(g1, g2, pseudo_interatom.r))

            # Reorder the unit vectors so that the structure and pseudo-atom dimensions are swapped.
            pseudo_unit_vect = transpose(array(pseudo_unit_vect, float64), (1, 0, 2))

            # Block append the pseudo-data.
            unit_vect.append(pseudo_unit_vect)
            rdc_const.append(pseudo_rdc_const)

        # Normal atom.
        else:
            # Set the flag.
            pseudo_flags.append(0)

            # Add the vectors.
            if is_float(interatom.vector[0]):
                unit_vect.append([interatom.vector])
            else:
                unit_vect.append(interatom.vector)

            # Calculate the RDC dipolar constant (in Hertz, and the 3 comes from the alignment tensor), and append it to the list.
            rdc_const.append(3.0/(2.0*pi) * dipolar_constant(g1, g2, interatom.r))

        # Store the measured J coupling.
        if opt_uses_j_couplings():
            j_couplings.append(interatom.j_coupling)

    # Fix the unit vector data structure.
    num = None
    for rdc_index in range(len(unit_vect)):
        # Convert to numpy structures.
        unit_vect[rdc_index] = array(unit_vect[rdc_index], float64)

        # Number of vectors.
        if num == None:
            if unit_vect[rdc_index] != None:
                num = len(unit_vect[rdc_index])
            continue

        # Check.
        if unit_vect[rdc_index] != None and len(unit_vect[rdc_index]) != num:
            raise RelaxError("The number of interatomic vectors for all no match:\n%s" % unit_vect[rdc_index])

    # Missing unit vectors.
    if num == None:
        raise RelaxError("No interatomic vectors could be found.")

    # Update None entries.
    for i in range(len(unit_vect)):
        if unit_vect[i] == None:
            unit_vect[i] = [[None, None, None]]*num

    # The RDC data.
    for i in range(len(cdp.align_ids)):
        # Alias the ID.
        align_id = cdp.align_ids[i]

        # Skip non-optimised data.
        if not opt_uses_align_data(align_id):
            continue

        # Append empty arrays to the RDC structures.
        rdc.append([])
        rdc_err.append([])
        rdc_weight.append([])
        absolute.append([])
        T_flags.append([])

        # Interatom loop.
        for interatom in interatomic_loop():
            # Get the spins.
            spin1 = return_spin(interatom.spin_id1)
            spin2 = return_spin(interatom.spin_id2)

            # RDC checks.
            if not check_rdcs(interatom):
                continue

            # T-type data.
            if align_id in interatom.rdc_data_types and interatom.rdc_data_types[align_id] == 'T':
                T_flags[-1].append(True)
            else:
                T_flags[-1].append(False)

            # Check for J couplings if the RDC data type is T = J+D.
            if T_flags[-1][-1] and not hasattr(interatom, 'j_coupling'):
                continue

            # Defaults of None.
            value = None
            error = None

            # Normal set up.
            if align_id in interatom.rdc.keys():
                # The RDC.
                if sim_index != None:
                    value = interatom.rdc_sim[align_id][sim_index]
                else:
                    value = interatom.rdc[align_id]

                # The error.
                if hasattr(interatom, 'rdc_err') and align_id in interatom.rdc_err.keys():
                    # T values.
                    if T_flags[-1][-1]:
                        error = sqrt(interatom.rdc_err[align_id]**2 + interatom.j_coupling_err**2)

                    # D values.
                    else:
                        error = interatom.rdc_err[align_id]

            # Append the RDCs to the list.
            rdc[-1].append(value)

            # Append the RDC errors.
            rdc_err[-1].append(error)

            # Append the weight.
            if hasattr(interatom, 'rdc_weight') and align_id in interatom.rdc_weight.keys():
                rdc_weight[-1].append(interatom.rdc_weight[align_id])
            else:
                rdc_weight[-1].append(1.0)

            # Append the absolute value flag.
            if hasattr(interatom, 'absolute_rdc') and align_id in interatom.absolute_rdc.keys():
                absolute[-1].append(interatom.absolute_rdc[align_id])
            else:
                absolute[-1].append(False)

    # Convert to numpy objects.
    rdc = array(rdc, float64)
    rdc_err = array(rdc_err, float64)
    rdc_weight = array(rdc_weight, float64)
    absolute = array(absolute, int32)
    T_flags = array(T_flags, int32)
    if not opt_uses_j_couplings():
        j_couplings = None
    pseudo_flags = array(pseudo_flags, int32)

    # Return the data structures.
    return rdc, rdc_err, rdc_weight, unit_vect, rdc_const, absolute, T_flags, j_couplings, pseudo_flags
Пример #16
0
def read(align_id=None, file=None, dir=None, file_data=None, data_type='D', spin_id1_col=None, spin_id2_col=None, data_col=None, error_col=None, sep=None, neg_g_corr=False, absolute=False):
    """Read the RDC data from file.

    @keyword align_id:      The alignment tensor ID string.
    @type align_id:         str
    @keyword file:          The name of the file to open.
    @type file:             str
    @keyword dir:           The directory containing the file (defaults to the current directory if None).
    @type dir:              str or None
    @keyword file_data:     An alternative to opening a file, if the data already exists in the correct format.  The format is a list of lists where the first index corresponds to the row and the second the column.
    @type file_data:        list of lists
    @keyword data_type:     A string which is set to 'D' means that the splitting in the aligned sample was assumed to be J + D, or if set to '2D' then the splitting was taken as J + 2D.  If set to 'T', then the data will be marked as being J+D values.
    @keyword spin_id1_col:  The column containing the spin ID strings of the first spin.
    @type spin_id1_col:     int
    @keyword spin_id2_col:  The column containing the spin ID strings of the second spin.
    @type spin_id2_col:     int
    @keyword data_col:      The column containing the RDC data in Hz.
    @type data_col:         int or None
    @keyword error_col:     The column containing the RDC errors.
    @type error_col:        int or None
    @keyword sep:           The column separator which, if None, defaults to whitespace.
    @type sep:              str or None
    @keyword neg_g_corr:    A flag which is used to correct for the negative gyromagnetic ratio of 15N.  If True, a sign inversion will be applied to all RDC values to be loaded.
    @type neg_g_corr:       bool
    @keyword absolute:      A flag which if True indicates that the RDCs to load are signless.  All RDCs will then be converted to positive values.
    @type absolute:         bool
    """

    # Check the pipe setup.
    check_pipe_setup(sequence=True)

    # Either the data or error column must be supplied.
    if data_col == None and error_col == None:
        raise RelaxError("One of either the data or error column must be supplied.")

    # Check the data types.
    rdc_types = ['D', '2D', 'T']
    if data_type not in rdc_types:
        raise RelaxError("The RDC data type '%s' must be one of %s." % (data_type, rdc_types))

    # Spin specific data.
    #####################

    # Extract the data from the file, and remove comments and blank lines.
    file_data = extract_data(file, dir, sep=sep)
    file_data = strip(file_data, comments=True)

    # Loop over the RDC data.
    data = []
    for line in file_data:
        # Invalid columns.
        if spin_id1_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no first spin ID column can be found." % line))
            continue
        if spin_id2_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no second spin ID column can be found." % line))
            continue
        if data_col and data_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no data column can be found." % line))
            continue
        if error_col and error_col > len(line):
            warn(RelaxWarning("The data %s is invalid, no error column can be found." % line))
            continue

        # Unpack.
        spin_id1 = line[spin_id1_col-1]
        spin_id2 = line[spin_id2_col-1]
        value = None
        if data_col:
            value = line[data_col-1]
        error = None
        if error_col:
            error = line[error_col-1]

        # Convert the spin IDs.
        if spin_id1[0] in ["\"", "\'"]:
            spin_id1 = eval(spin_id1)
        if spin_id2[0] in ["\"", "\'"]:
            spin_id2 = eval(spin_id2)

        # Convert and check the value.
        if value == 'None':
            value = None
        if value != None:
            try:
                value = float(value)
            except ValueError:
                warn(RelaxWarning("The RDC value of the line %s is invalid." % line))
                continue

        # Convert and check the error.
        if error == 'None':
            error = None
        if error != None:
            try:
                error = float(error)
            except ValueError:
                warn(RelaxWarning("The error value of the line %s is invalid." % line))
                continue

        # Get the spins.
        spin1 = return_spin(spin_id1)
        spin2 = return_spin(spin_id2)

        # Check the spin IDs.
        if not spin1:
            warn(RelaxWarning("The spin ID '%s' cannot be found in the current data pipe, skipping the data %s." % (spin_id1, line)))
            continue
        if not spin2:
            warn(RelaxWarning("The spin ID '%s' cannot be found in the current data pipe, skipping the data %s." % (spin_id2, line)))
            continue

        # Get the interatomic data container.
        interatom = return_interatom(spin_id1, spin_id2)

        # Create the container if needed.
        if interatom == None:
            interatom = create_interatom(spin_id1=spin_id1, spin_id2=spin_id2)

        # Test the error value (a value of 0.0 will cause the interatomic container to be deselected).
        if error == 0.0:
            interatom.select = False
            warn(RelaxWarning("An error value of zero has been encountered, deselecting the interatomic container between spin '%s' and '%s'." % (spin_id1, spin_id2)))
            continue

        # Store the data type as global data (need for the conversion of RDC data).
        if not hasattr(interatom, 'rdc_data_types'):
            interatom.rdc_data_types = {}
        if not align_id in interatom.rdc_data_types:
            interatom.rdc_data_types[align_id] = data_type

        # Convert and add the data.
        if data_col:
            # Data conversion.
            value = convert(value, data_type, align_id, to_intern=True)

            # Correction for the negative gyromagnetic ratio of 15N.
            if neg_g_corr and value != None:
                value = -value

            # Absolute values.
            if absolute:
                # Force the value to be positive.
                value = abs(value)

            # Initialise.
            if not hasattr(interatom, 'rdc'):
                interatom.rdc = {}

            # Add the value.
            interatom.rdc[align_id] = value

            # Store the absolute value flag.
            if not hasattr(interatom, 'absolute_rdc'):
                interatom.absolute_rdc = {}
            interatom.absolute_rdc[align_id] = absolute

        # Convert and add the error.
        if error_col:
            # Data conversion.
            error = convert(error, data_type, align_id, to_intern=True)

            # Initialise.
            if not hasattr(interatom, 'rdc_err'):
                interatom.rdc_err = {}

            # Append the error.
            interatom.rdc_err[align_id] = error

        # Append the data for printout.
        data.append([spin_id1, spin_id2])
        if is_float(value):
            data[-1].append("%20.15f" % value)
        else:
            data[-1].append("%20s" % value)
        if is_float(error):
            data[-1].append("%20.15f" % error)
        else:
            data[-1].append("%20s" % error)

    # No data, so fail hard!
    if not len(data):
        raise RelaxError("No RDC data could be extracted.")

    # Print out.
    print("The following RDCs have been loaded into the relax data store:\n")
    write_data(out=sys.stdout, headings=["Spin_ID1", "Spin_ID2", "Value", "Error"], data=data)

    # Initialise some global structures.
    if not hasattr(cdp, 'align_ids'):
        cdp.align_ids = []
    if not hasattr(cdp, 'rdc_ids'):
        cdp.rdc_ids = []

    # Add the RDC id string.
    if align_id not in cdp.align_ids:
        cdp.align_ids.append(align_id)
    if align_id not in cdp.rdc_ids:
        cdp.rdc_ids.append(align_id)
Пример #17
0
def check_rdcs(interatom):
    """Check if all data required for calculating the RDC is present.

    @param interatom:   The interatomic data container.
    @type interatom:    InteratomContainer instance
    @return:            True if all data required for calculating the RDC is present, False otherwise.
    @rtype:             bool
    """

    # Skip deselected interatomic data containers.
    if not interatom.select:
        return False

    # Only use interatomic data containers with RDC data.
    if not hasattr(interatom, 'rdc'):
        return False

    # Only use interatomic data containers with RDC and J coupling data.
    if opt_uses_j_couplings() and not hasattr(interatom, 'j_coupling'):
        return False

    # Get the spins.
    spin1 = return_spin(interatom.spin_id1)
    spin2 = return_spin(interatom.spin_id2)

    # Spin information checks.
    if not hasattr(spin1, 'isotope'):
        warn(RelaxSpinTypeWarning(interatom.spin_id1))
        return False
    if not hasattr(spin2, 'isotope'):
        warn(RelaxSpinTypeWarning(interatom.spin_id2))
        return False
    if is_pseudoatom(spin1) and is_pseudoatom(spin2):
        warn(RelaxWarning("Support for both spins being in a dipole pair being pseudo-atoms is not implemented yet."))
        return False

    # Pseudo-atom checks.
    if is_pseudoatom(spin1) or is_pseudoatom(spin2):
        # Alias the pseudo and normal atoms.
        pseudospin = spin1
        base_spin_id = interatom.spin_id2
        pseudospin_id = interatom.spin_id1
        if is_pseudoatom(spin2):
            pseudospin = spin2
            base_spin_id = interatom.spin_id1
            pseudospin_id = interatom.spin_id2

        # Loop over the atoms of the pseudo-atom.
        for spin, spin_id in pseudoatom_loop(pseudospin, return_id=True):
            # Get the corresponding interatomic data container.
            pseudo_interatom = return_interatom(spin_id1=spin_id, spin_id2=base_spin_id)

            # Unit vector check.
            if not hasattr(pseudo_interatom, 'vector'):
                warn(RelaxWarning("The interatomic vector is missing for the spin pair '%s' and '%s' of the pseudo-atom '%s', skipping the RDC for the spin pair '%s' and '%s'." % (pseudo_interatom.spin_id1, pseudo_interatom.spin_id2, pseudospin_id, base_spin_id, pseudospin_id)))
                return False

            # Check.
            if not hasattr(pseudo_interatom, 'r'):
                warn(RelaxWarning("The averaged interatomic distance between spins '%s' and '%s' for the pseudo-atom '%s' has not been set yet." % (spin_id, base_spin_id, pseudospin_id)))
                return False

    # Normal atoms checks.
    else:
        # Unit vector check.
        if not hasattr(interatom, 'vector'):
            warn(RelaxWarning("The interatomic vector is missing, skipping the spin pair '%s' and '%s'." % (interatom.spin_id1, interatom.spin_id2)))
            return False

        # Distance information check.
        if not hasattr(interatom, 'r'):
            warn(RelaxWarning("The averaged interatomic distance between spins '%s' and '%s' has not been set yet." % (interatom.spin_id1, interatom.spin_id2)))
            return False

    # Everything is ok.
    return True
Пример #18
0
def bmrb_read(star, sample_conditions=None):
    """Read the relaxation data from the NMR-STAR dictionary object.

    @param star:                The NMR-STAR dictionary object.
    @type star:                 NMR_STAR instance
    @keyword sample_conditions: The sample condition label to read.  Only one sample condition can be read per data pipe.
    @type sample_conditions:    None or str
    """

    # Get the relaxation data.
    for data in star.relaxation.loop():
        # Store the keys.
        keys = list(data.keys())

        # Sample conditions do not match (remove the $ sign).
        if 'sample_cond_list_label' in keys and sample_conditions and data['sample_cond_list_label'].replace('$', '') != sample_conditions:
            continue

        # Create the labels.
        ri_type = data['data_type']
        frq = float(data['frq']) * 1e6

        # Round the label to the nearest factor of 10.
        frq_label = create_frq_label(float(data['frq']) * 1e6)

        # The ID string.
        ri_id = "%s_%s" % (ri_type, frq_label)

        # The number of spins.
        N = bmrb.num_spins(data)

        # No data in the saveframe.
        if N == 0:
            continue

        # The molecule names.
        mol_names = bmrb.molecule_names(data, N)

        # Generate the sequence if needed.
        bmrb.generate_sequence(N, spin_names=data['atom_names'], res_nums=data['res_nums'], res_names=data['res_names'], mol_names=mol_names, isotopes=data['isotope'], elements=data['atom_types'])

        # The attached protons.
        if 'atom_names_2' in data:
            # Generate the proton spins.
            bmrb.generate_sequence(N, spin_names=data['atom_names_2'], res_nums=data['res_nums'], res_names=data['res_names'], mol_names=mol_names, isotopes=data['isotope_2'], elements=data['atom_types_2'])

            # Define the dipolar interaction.
            for i in range(len(data['atom_names'])):
                # The spin IDs.
                spin_id1 = generate_spin_id_unique(spin_name=data['atom_names'][i], res_num=data['res_nums'][i], res_name=data['res_names'][i], mol_name=mol_names[i])
                spin_id2 = generate_spin_id_unique(spin_name=data['atom_names_2'][i], res_num=data['res_nums'][i], res_name=data['res_names'][i], mol_name=mol_names[i])

                # Check if the container exists.
                if return_interatom(spin_id1=spin_id1, spin_id2=spin_id2):
                    continue

                # Define.
                define(spin_id1=spin_id1, spin_id2=spin_id2, verbose=False)

        # The data and error.
        vals = data['data']
        errors = data['errors']
        if vals == None:
            vals = [None] * N
        if errors == None:
            errors = [None] * N

        # Data transformation.
        if vals != None and 'units' in keys:
            # Scaling.
            if data['units'] == 'ms':
                # Loop over the data.
                for i in range(N):
                    # The value.
                    if vals[i] != None:
                        vals[i] = vals[i] / 1000

                    # The error.
                    if errors[i] != None:
                        errors[i] = errors[i] / 1000

            # Invert.
            if data['units'] in ['s', 'ms']:
                # Loop over the data.
                for i in range(len(vals)):
                    # The value.
                    if vals[i] != None:
                        vals[i] = 1.0 / vals[i]

                    # The error.
                    if vals[i] != None and errors[i] != None:
                        errors[i] = errors[i] * vals[i]**2

        # Pack the data.
        pack_data(ri_id, ri_type, frq, vals, errors, mol_names=mol_names, res_nums=data['res_nums'], res_names=data['res_names'], spin_nums=None, spin_names=data['atom_names'], gen_seq=True, verbose=False)

        # Store the temperature calibration and control.
        if data['temp_calibration']:
            temp_calibration(ri_id=ri_id, method=data['temp_calibration'])
        if data['temp_control']:
            temp_control(ri_id=ri_id, method=data['temp_control'])

        # Peak intensity type.
        if data['peak_intensity_type']:
            peak_intensity_type(ri_id=ri_id, type=data['peak_intensity_type'])