Пример #1
0
 def test_baseadapter__setattr__(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     self.assertEqual(lm_strategy.copy_X, True)
     lm_strategy.copy_X = False
     self.assertEqual(lm_strategy.copy_X, False)
     self.assertEqual('copy_X' in dir(lm_strategy), False)
Пример #2
0
 def test_baseadapter__fit_AdapterForFitPredictAdaptee(self):
     X = self.X
     y = self.y
     lm = LinearRegression()
     stepstrategy = AdapterForFitPredictAdaptee(lm)
     self.assertEqual(hasattr(stepstrategy._adaptee, 'coef_'), False)
     result = stepstrategy.fit(X=X, y=y)
     self.assertEqual(hasattr(stepstrategy._adaptee, 'coef_'), True)
     self.assertEqual(stepstrategy, result)
Пример #3
0
 def test_baseadapter__get_params(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     result_lm = lm_strategy.get_params()
     self.assertEqual(result_lm, {
         'copy_X': True,
         'fit_intercept': True,
         'n_jobs': 1,
         'normalize': False
     })
Пример #4
0
    def test_process__get_fit_signature(self):
        lm = LinearRegression()
        gm = GaussianMixture()
        lm_strategy = AdapterForFitPredictAdaptee(lm)
        gm_strategy = AdapterForFitPredictAdaptee(gm)
        step_lm = Process(lm_strategy)
        step_gm = Process(gm_strategy)
        result_lm = step_lm._get_fit_signature()
        result_gm = step_gm._get_fit_signature()

        self.assertEqual(result_lm, ['X', 'y', 'sample_weight'])
        self.assertEqual(result_gm, ['X', 'y'])
Пример #5
0
 def test_FitPredictWithDictionaryOutput__get_predict_signature(self):
     lm = LinearRegression()
     wrapped_lm = AdapterForFitPredictAdaptee(lm)
     double_wrap = AdapterForCustomFitPredictWithDictionaryOutputAdaptee(
         wrapped_lm)
     result = double_wrap._get_predict_signature()
     self.assertEqual(result, ['X'])
Пример #6
0
 def test_FitPredictWithDictionaryOutput__get_fit_signature(self):
     lm = LinearRegression()
     wrapped_lm = AdapterForFitPredictAdaptee(lm)
     double_wrap = AdapterForCustomFitPredictWithDictionaryOutputAdaptee(
         wrapped_lm)
     result = double_wrap._get_fit_signature()
     self.assertEqual(sorted(result), sorted(['X', 'y', 'sample_weight']))
Пример #7
0
 def test_process__setattr__(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     step = Process(lm_strategy)
     self.assertEqual(step.copy_X, True)
     step.copy_X = False
     self.assertEqual(step.copy_X, False)
     self.assertEqual('copy_X' in dir(step), False)
Пример #8
0
    def test_FitPredict__predict(self):
        X = self.X
        y = self.y
        lm = LinearRegression()
        lm_strategy = AdapterForFitPredictAdaptee(lm)
        lm_strategy.fit(X=X, y=y)
        result_lm = lm_strategy.predict(X=X)
        self.assertEqual(list(result_lm.keys()), ['predict'])
        self.assertEqual(result_lm['predict'].shape, (self.size, 1))

        gm = GaussianMixture()
        gm_strategy = AdapterForFitPredictAdaptee(gm)
        gm_strategy.fit(X=X)
        result_gm = gm_strategy.predict(X=X)
        self.assertEqual(sorted(list(result_gm.keys())),
                         sorted(['predict', 'predict_proba']))
        self.assertEqual(result_gm['predict'].shape, (self.size, ))
Пример #9
0
    def test_process__predict(self):
        X = self.X
        y = self.y
        lm = LinearRegression()
        gm = GaussianMixture()
        lm_strategy = AdapterForFitPredictAdaptee(lm)
        gm_strategy = AdapterForFitPredictAdaptee(gm)
        step_lm = Process(lm_strategy)
        step_gm = Process(gm_strategy)

        step_lm.fit(X=X, y=y)
        step_gm.fit(X=X)

        result_lm = step_lm.predict(X=X)
        result_gm = step_gm.predict(X=X)

        self.assertEqual(list(result_lm.keys()), ['predict'])
        self.assertEqual(sorted(list(result_gm.keys())),
                         sorted(['predict', 'predict_proba']))
Пример #10
0
 def test_process__fit_lm(self):
     X = self.X
     y = self.y
     lm = LinearRegression()
     stepstrategy = AdapterForFitPredictAdaptee(lm)
     step = Process(stepstrategy)
     self.assertEqual(hasattr(step, 'coef_'), False)
     result = step.fit(X=X, y=y)
     self.assertEqual(hasattr(step, 'coef_'), True)
     self.assertEqual(step, result)
Пример #11
0
    def test_FitPredictWithDictionaryOutput__predict(self):
        X = self.X
        y = self.y.astype(int)
        gm = GaussianNB()
        wrapped_gm = AdapterForFitPredictAdaptee(gm)
        double_wrap = AdapterForCustomFitPredictWithDictionaryOutputAdaptee(
            wrapped_gm)

        double_wrap.fit(X=X, y=y)
        result = double_wrap.predict(X=X)
        self.assertEqual(
            sorted(list(result.keys())),
            sorted(['predict', 'predict_proba', 'predict_log_proba']))
        self.assertEqual(result['predict'].shape[0], self.size)
        self.assertEqual(result['predict_proba'].shape[0], self.size)
        self.assertEqual(result['predict_log_proba'].shape[0], self.size)
Пример #12
0
    def test_baseadapter__get_fit_signature(self):
        lm = LinearRegression()
        gm = GaussianMixture()
        lm_strategy = AdapterForFitPredictAdaptee(lm)
        gm_strategy = AdapterForFitPredictAdaptee(gm)

        result_lm = lm_strategy._get_fit_signature()
        result_gm = gm_strategy._get_fit_signature()

        self.assertEqual(sorted(result_lm), sorted(['X', 'y',
                                                    'sample_weight']))
        self.assertEqual(sorted(result_gm), sorted(['X', 'y']))
Пример #13
0
 def test_process__set_params(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     step = Process(lm_strategy)
     result_lm_pre = step.get_params()
     self.assertEqual(result_lm_pre, {
         'copy_X': True,
         'fit_intercept': True,
         'n_jobs': 1,
         'normalize': False
     })
     step.set_params(fit_intercept=False)
     result_lm_post = step.get_params()
     self.assertEqual(
         result_lm_post, {
             'copy_X': True,
             'fit_intercept': False,
             'n_jobs': 1,
             'normalize': False
         })
Пример #14
0
def wrap_adaptee_in_process(adaptee, adapter_class=None):
    """
    This function wraps the objects defined in Pipegraph's steps parameters in order to provide a common interface for them all.
    This interface declares two main methods: fit and predict. So, no matter whether the adaptee is capable of doing
    predict, transform or fit_predict, once wrapped the adapter uses predict as method for producing output.

    Parameters:
    -----------
        adaptee: a Scikit-Learn object, for instance; or a user made custom estimator may be.
            The object to be wrapped.
        adapter_class: A user made class; or one already defined in pipegraph.adapters
            The wrapper.

    Returns:
    -------
        An object wrapped into a first adapter layer that provides a common fit and predict interface and then wrapped
        again in a second external layer using the Process class. Besides of being used by PipeGraph itself,
        the user can find this function useful for inserting a user made block as one of the steps
        in PipeGraph step's parameter.
    """
    if adapter_class is not None:
        strategy = adapter_class(adaptee)
    elif isinstance(adaptee, Process):
        return adaptee
    elif isinstance(adaptee, PipeGraph):
        strategy = AdapterForCustomFitPredictWithDictionaryOutputAdaptee(
            adaptee)
    elif adaptee.__class__ in strategies_for_custom_adaptees:
        strategy = strategies_for_custom_adaptees[adaptee.__class__](adaptee)
    elif hasattr(adaptee, 'transform'):
        strategy = AdapterForFitTransformAdaptee(adaptee)
    elif hasattr(adaptee, 'predict'):
        strategy = AdapterForFitPredictAdaptee(adaptee)
    elif hasattr(adaptee, 'fit_predict'):
        strategy = AdapterForAtomicFitPredictAdaptee(adaptee)
    else:
        raise ValueError('Error: Unknown adaptee!')

    process = Process(strategy)
    return process
Пример #15
0
 def test_process__get_predict_signature_lm(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     step_lm = Process(lm_strategy)
     result_lm = step_lm._get_predict_signature()
     self.assertEqual(result_lm, ['X'])
Пример #16
0
 def test_process__repr__(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     step = Process(lm_strategy)
     result = step.__repr__()
     self.assertEqual(result, lm.__repr__())
Пример #17
0
 def test_baseadapter__init(self):
     lm = LinearRegression()
     stepstrategy = AdapterForFitPredictAdaptee(lm)
     self.assertEqual(stepstrategy._adaptee, lm)
Пример #18
0
 def test_FitPredict__get_predict_signature(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     result_lm = lm_strategy._get_predict_signature()
     self.assertEqual(result_lm, ['X'])
Пример #19
0
 def test_baseadapter__repr__(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     result = lm_strategy.__repr__()
     self.assertEqual(result, lm.__repr__())
Пример #20
0
 def test_process__init(self):
     lm = LinearRegression()
     stepstrategy = AdapterForFitPredictAdaptee(lm)
     step = Process(stepstrategy)
     self.assertEqual(step._strategy, stepstrategy)
Пример #21
0
 def test_baseadapter__getattr__(self):
     lm = LinearRegression()
     lm_strategy = AdapterForFitPredictAdaptee(lm)
     self.assertEqual(lm_strategy.copy_X, True)