def __init__(self, dataparser_obj, start, size): self.dp = dataparser_obj self.hyp = Hyperparameters() self.labels = self.dp.get_meta() self.size_of_sample = size self.chunkIdentifier = str(size) self.validation_start = 0 self.test_start = self.hyp.VALIDATION_NUMBER + self.size_of_sample - 1 self.train_start = self.test_start + self.hyp.TEST_NUMBER + self.size_of_sample - 1 self.train_matrix_data = list() self.train_matrix_labels = list() self.train_count = 0 self.valid_count = 0 self.test_count = 0 print("making validation set") self.make_valid_set(start, size) print("making test set") self.make_test_set(start, size) print("making train set") self.make_train_set(start, size)
def __init__(self, dataparser_obj): self.tool = Utility() self.dp = dataparser_obj self.hyp = Hyperparameters() self.labels = self.dp.get_meta() self.size_of_sample = self.dp.return_size_name( self.hyp.MODE_OF_LEARNING) self.chunkIdentifier = self.dp.return_chunkIdent_name( self.hyp.MODE_OF_LEARNING) self.validation_start = 0 self.test_start = self.hyp.VALIDATION_NUMBER + self.size_of_sample - 1 self.train_start = self.test_start + self.hyp.TEST_NUMBER + self.size_of_sample - 1 self.train_matrix_data = list() self.train_matrix_labels = list() self.train_count = 0 self.valid_count = 0 self.test_count = 0 print("making validation set") self.make_valid_set() print("making test set") self.make_test_set() print("making train set") self.make_train_set()
def __init__(self, *argv): self.hyp = Hyperparameters() if(len((argv)) == 2): print("I have registered a cookie-cutter chunk mode") assert isinstance(argv[0], DataParser_Universal) == True, "you did not give me a DataParser object!" assert isinstance(argv[1], str) == True, "you didn't give a proper key word" self.chunkIdentifier = argv[1] self.size = self.hyp.sizedict[self.chunkIdentifier] self.mode = 1 elif(len(argv) == 3): print("I have registered arbitrary mode") assert isinstance(argv[0], DataParser_Universal) == True, "you did not give me a DataParser object!" assert isinstance(argv[1], int) == True, "you didn't give a proper start" assert isinstance(argv[2], int) == True, "you didn't give a proper size" self.size = argv[2] self.start = argv[1] self.mode = 0 else: raise Exception("invalid number of arguments") self.dp = argv[0] self.labels = self.dp.get_meta() self.validation_start = 0 self.test_start = self.hyp.VALIDATION_NUMBER + self.size - 1 self.train_start = self.test_start + self.hyp.TEST_NUMBER + self.size - 1 self.train_matrix_data = list() self.train_matrix_labels = list() self.train_count = 0 self.valid_count = 0 self.test_count = 0 print("making validation set") self.make_valid_set() print("making test set") self.make_test_set() print("making train set") self.make_train_set()
def __init__(self, dataparser_obj, arbiflag): self.dp = dataparser_obj self.hyp = Hyperparameters() self.labels = self.dp.get_meta() if not (arbiflag): self.size_of_sample = self.dp.return_size_name( self.hyp.MODE_OF_LEARNING) self.chunkIdentifier = self.dp.return_chunkIdent_name( self.hyp.MODE_OF_LEARNING) self.validation_start = 0 self.test_start = self.hyp.VALIDATION_NUMBER + self.size_of_sample - 1 self.train_start = self.test_start + self.hyp.TEST_NUMBER + self.size_of_sample - 1 self.test_count = 0 print("making test set") self.make_test_set()
def __init__(self): self.hyp = Hyperparameters() self.datasetList = list() self.amparr = list() self.superList = list( ) # this will contain dictionasries for each directory for largeDirectory in self.hyp.data_to_include: masteramparr = {} files = sorted(listdir(largeDirectory)) for file in files: if file.find(".") < 0: try: masteramparr[file] = self.getAmpArr( file, largeDirectory) print(largeDirectory + "/" + file) self.datasetList.append(file) except: print(file + " was empty. I skipped it") self.superList.append(masteramparr) self.datasetList = list(dict.fromkeys( self.datasetList)) # removes duplicates
import tensorflow as tf import numpy as np import csv import os from pipeline.ProjectUtility import Utility import shutil import pickle from pipeline.MyCNNLibrary import * #this is my own "keras" extension onto tensorflow from pipeline.Hyperparameters import Hyperparameters from pipeline.DatasetMaker_Single_Test import DatasetMaker from pipeline.DataParser_Single import DataParser from housekeeping.csv_to_mat import ConfusionMatrixVisualizer HYP = Hyperparameters() DP = DataParser() name = "Vanilla" Cross = "test" version = "AllDataCNN_test" + HYP.MODE_OF_LEARNING weight_bias_list = list() #this is the weights and biases matrix base_directory = "../Graphs_and_Results/" + name + "/" + version + "/" try: os.mkdir(base_directory) print("made directory {}".format( base_directory)) #this can only go one layer deep except: print("directory exists!") pass