Пример #1
0
def main(config="../../config.yaml", namespace=""):
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = [{
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }, {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }]

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=hosts, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).algorithm_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host',
        party_id=hosts[0]).algorithm_param(table=host_train_data[0])
    reader_0.get_party_instance(
        role='host',
        party_id=hosts[1]).algorithm_param(table=host_train_data[1])

    # define DataIO components
    dataio_0 = DataIO(name="dataio_0")  # start component numbering at 0

    # get DataIO party instance of guest
    dataio_0_guest_party_instance = dataio_0.get_party_instance(role='guest',
                                                                party_id=guest)
    # configure DataIO for guest
    dataio_0_guest_party_instance.algorithm_param(with_label=True,
                                                  output_format="dense")
    # get and configure DataIO party instance of host
    dataio_0.get_party_instance(
        role='host', party_id=hosts[0]).algorithm_param(with_label=False)
    dataio_0.get_party_instance(
        role='host', party_id=hosts[1]).algorithm_param(with_label=False)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0")

    param = {"k": 3, "max_iter": 10}

    hetero_kmeans_0 = HeteroKmeans(name='hetero_kmeans_0', **param)
    evaluation_0 = Evaluation(name='evaluation_0', eval_type='clustering')

    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))

    # set data input sources of intersection components
    pipeline.add_component(intersection_0,
                           data=Data(data=dataio_0.output.data))

    pipeline.add_component(hetero_kmeans_0,
                           data=Data(train_data=intersection_0.output.data))
    # print(f"data: {hetero_kmeans_0.output.data.data[0]}")
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_kmeans_0.output.data.data[0]))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit(backend=backend, work_mode=work_mode)
    # query component summary
    print(pipeline.get_component("hetero_kmeans_0").get_summary())
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    # define DataIO components
    dataio_0 = DataIO(name="dataio_0")  # start component numbering at 0

    # get DataIO party instance of guest
    dataio_0_guest_party_instance = dataio_0.get_party_instance(role='guest',
                                                                party_id=guest)
    # configure DataIO for guest
    dataio_0_guest_party_instance.component_param(with_label=True,
                                                  output_format="dense")
    # get and configure DataIO party instance of host
    dataio_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0")

    param = {
        "name": 'hetero_feature_binning_0',
        "method": 'optimal',
        "optimal_binning_param": {
            "metric_method": "iv"
        },
        "bin_indexes": -1
    }
    hetero_feature_binning_0 = HeteroFeatureBinning(**param)

    param = {
        "name": 'hetero_feature_selection_0',
        "filter_methods": ["manually", "iv_filter"],
        "manually_param": {
            "filter_out_indexes": [1]
        },
        "iv_param": {
            "metrics": ["iv", "iv"],
            "filter_type": ["top_k", "threshold"],
            "take_high": [True, True],
            "threshold": [10, 0.001]
        },
        "select_col_indexes": -1
    }
    hetero_feature_selection_0 = HeteroFeatureSelection(**param)

    param = {"k": 3, "max_iter": 10}

    hetero_kmeans_0 = HeteroKmeans(name='hetero_kmeans_0', **param)
    evaluation_0 = Evaluation(name='evaluation_0', eval_type='clustering')

    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    # set data input sources of intersection components
    pipeline.add_component(intersection_0,
                           data=Data(data=dataio_0.output.data))
    # set train & validate data of hetero_lr_0 component
    pipeline.add_component(hetero_feature_binning_0,
                           data=Data(data=intersection_0.output.data))
    pipeline.add_component(
        hetero_feature_selection_0,
        data=Data(data=intersection_0.output.data),
        model=Model(isometric_model=hetero_feature_binning_0.output.model))
    pipeline.add_component(
        hetero_kmeans_0,
        data=Data(train_data=hetero_feature_selection_0.output.data))
    print(f"data: {hetero_kmeans_0.output.data.data[0]}")
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_kmeans_0.output.data.data[0]))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
    # query component summary
    print(pipeline.get_component("hetero_kmeans_0").get_summary())