def do_setup_and_start_training(modules, configs, rank, size, device_list, single=False): if not single: os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29509' dist.init_process_group('nccl', rank=rank, world_size=size) with torch.cuda.device(device_list[rank]): print('initializing model on rank %d' % rank) if single: shared_model = DummySharedWrapper(modules['model']( configs['model'])).cuda() else: shared_model = torch.nn.parallel.DistributedDataParallel( modules['model'](configs['model']).cuda(), device_ids=[device_list[rank]], find_unused_parameters=True) model = DistributedWrapper(shared_model) memory = modules['memory'](configs['memory']) loss_function = modules['loss'](configs['loss']) trainer_config = configs['trainer'] trainer_config.log_path = trainer_config.log_path + '%d.log' % rank if rank > 0: trainer_config.save_frequency = 0 trainer = Trainer(model, memory, loss_function, trainer_config) print('starting training process on rank %d' % rank) stats = trainer.train() print('done %d' % rank) return stats
def evaluate_current_config(docs, labels, tvt_idx, verbose=True): dataset = DocumentGraphDataset(docs, labels, tvt_idx) model = create_model(dataset) # paras = count_parameters(model) # print("\t\"", config["test_name"], "\" : ", paras, sep="") # return 0 trainer = Trainer(dataset, model) best_val_loss = float('inf') best_model_test = 0 time_since_best = 0 for i in range(config["epochs"]): train_loss, val_loss = trainer.train_epoch() test_acc = trainer.test() if verbose: print( config["indices"] + " [epoch %02d] Train loss %.4f, Val loss %.4f, Test Acc %.4f" % (i, train_loss, val_loss, test_acc)) # Early stopping time_since_best += 1 if val_loss < best_val_loss: best_val_loss = val_loss best_model_test = test_acc time_since_best = 0 if config["terminate_early"] and time_since_best >= config[ "terminate_patience"]: print( "\n ## [RESULT!] %s achieved final test score at epoch %i: %.4f ## \n" % (config["test_name"], i - time_since_best, best_model_test)) break del dataset del model del trainer gc.collect() torch.cuda.empty_cache() return best_model_test
def main(): docs, labels, (t_idx, v_idx, test_idx) = load_data() in_training_test = test_idx[:len(test_idx) // 2] out_training_test = test_idx[len(test_idx) // 2:] # train on (train, val, in_training_test) train_docs = docs[t_idx + v_idx + in_training_test] train_labels = labels[t_idx + v_idx + in_training_test] train_and_intest_indices = (t_idx, v_idx, range( len(t_idx) + len(v_idx), len(train_labels))) a = 0 b = 0 # test on (in_training_test) only_in_training_docs = docs[t_idx[:a] + v_idx[:b] + in_training_test] only_in_training_labels = labels[t_idx[:a] + v_idx[:b] + in_training_test] only_in_training_indices = ([t_idx[:a]], [v_idx[:b]], range(a + b, len(only_in_training_labels))) # test on (out_training_test) only_out_training_docs = docs[t_idx[:a] + v_idx[:b] + out_training_test] only_out_training_labels = labels[t_idx[:a] + v_idx[:b] + out_training_test] only_out_training_indices = ([t_idx[:a]], [v_idx[:b]], range(a + b, len(only_out_training_labels))) # test on (train, val, out_training_test) train_and_outtest_docs = docs[t_idx + v_idx + out_training_test] train_and_outtest_labels = labels[t_idx + v_idx + out_training_test] train_and_outtest_indices = (t_idx, v_idx, range( len(t_idx) + len(v_idx), len(train_and_outtest_labels))) train_and_intest_dataset = DocumentGraphDataset(train_docs, train_labels, train_and_intest_indices) only_in_training_dataset = DocumentGraphDataset( only_in_training_docs, only_in_training_labels, only_in_training_indices, force_vocab=train_and_intest_dataset.vocab) only_out_training_dataset = DocumentGraphDataset( only_out_training_docs, only_out_training_labels, only_out_training_indices, force_vocab=train_and_intest_dataset.vocab) train_and_outtest_dataset = DocumentGraphDataset( train_and_outtest_docs, train_and_outtest_labels, train_and_outtest_indices, force_vocab=train_and_intest_dataset.vocab) model = None best_val_loss = float('inf') time_since_best = 0 for i in range(config["epochs"]): if model is None: model = create_model(train_and_intest_dataset) trainer = Trainer(train_and_intest_dataset, model) else: trainer.update_data(train_and_intest_dataset) train_loss, val_loss = trainer.train_epoch() test_acc_train_and_intest = trainer.test() trainer.update_data(only_in_training_dataset) test_acc_only_in_training = trainer.test() trainer.update_data(only_out_training_dataset) test_acc_only_out_training = trainer.test() trainer.update_data(train_and_outtest_dataset) test_acc_train_and_outtest = trainer.test() print("[epoch %02d] Train loss %.4f, Val loss %.4f" % (i, train_loss, val_loss)) print(" acc on in training test, with training docs in graph: %.4f" % (test_acc_train_and_intest)) print( " acc on in training test, WITHOUT training docs in graph: %.4f" % (test_acc_only_in_training)) print( " acc on out of training test, WITHOUT training docs in graph: %.4f" % (test_acc_only_out_training)) print( " acc on out of training test, with training docs in graph: %.4f" % (test_acc_train_and_outtest)) # Early stopping time_since_best += 1 if val_loss < best_val_loss: best_val_loss = val_loss time_since_best = 0 if config["terminate_early"] and time_since_best >= config[ "terminate_patience"]: print("\n[RESULT!] Final test score: see above") break
def main(): update_config(quick_config) docs, labels, tvt_idx = load_data() dataset = DocumentGraphDataset(docs, labels, tvt_idx) model = create_model(dataset) trainer = Trainer(dataset, model) # trainer.save_initial_reps() best_val_loss = float('inf') time_since_best = 0 best_val_loss_acc = 0 high_score = 0 for i in range(config["epochs"]): # split for special debug printing if config["sampled_training"] and config["unsupervised_loss"]: # trainer.save_sage_reps() train_loss, val_loss, unsup_train_loss_pos, unsup_train_loss_neg, unsup_val_loss_pos, unsup_val_loss_neg, unsup_test_pos, unsup_test_neg = trainer.train_epoch( ) test_acc, test_loss, unsup_test_loss_pos, unsup_test_loss_neg = trainer.test( ) total_train = train_loss + unsup_train_loss_pos + unsup_train_loss_neg total_val = val_loss + unsup_val_loss_pos + unsup_val_loss_neg total_test = test_loss + unsup_test_loss_pos + unsup_test_loss_neg print("[epoch %02d] Test Acc %.4f (Trained %s-supervised)" % (i, test_acc, config['sup_mode'])) print("\t Train Loss: %.4f (%.4f / %.4f / %.4f) (%.0f%% sup)" % (total_train, train_loss, unsup_train_loss_pos, unsup_train_loss_neg, train_loss / total_train * 100)) print("\t Val Loss: %.4f (%.4f / %.4f / %.4f) (%.0f%% sup)" % (total_val, val_loss, unsup_val_loss_pos, unsup_val_loss_neg, val_loss / total_val * 100)) print("\t Training on test Losses: %.4f, %.4f, %.1f%% of total" % (unsup_test_pos, unsup_test_neg, (unsup_test_pos + unsup_test_neg) / (unsup_test_pos + unsup_test_neg + total_train) * 100)) # print("\t Test Loss: %.4f (%.4f / %.4f / %.4f) (%.0f%% sup)" % (total_test, test_loss, unsup_test_loss_pos, unsup_test_loss_neg, test_loss / total_test)) val_loss = total_val else: train_loss, val_loss = trainer.train_epoch() test_acc = trainer.test() high_score = max(test_acc, high_score) print( "[epoch %02d] Train loss %.4f, Val loss %.4f, Test Acc %.4f, Highscore: %.4f" % (i, train_loss, val_loss, test_acc, high_score)) # Early stopping time_since_best += 1 if val_loss < best_val_loss: best_val_loss = val_loss time_since_best = 0 best_val_loss_acc = test_acc if config["terminate_early"] and time_since_best >= config[ "terminate_patience"]: if config["sampled_training"] and config["unsupervised_loss"]: test_acc, test_loss, unsup_test_loss_pos, unsup_test_loss_neg = trainer.test( ) print("\n[RESULT!] Final test score: ", best_val_loss_acc) else: test_acc = trainer.test() break print("\n[RESULT!] Final test score: ", best_val_loss_acc)
actor_config.data_files = [[ 'NovelObjects__train.json', 'NovelObjects__test.json' ], ['NovelSpaces__train.json', 'NovelSpaces__test.json']][dataset] actor_config.data_files = [ os.path.join(dataset_folder, fn) for fn in actor_config.data_files ] loss_function = MaskAndMassLoss(MaskAndMassLossConfig()) model = ClusteringModel(ClusteringModelConfig()).cuda( global_config.model_gpu) trainer_config = TrainerConfig() trainer_config.log_path = os.path.join(output_folder, 'training_log.log') trainer = Trainer(model, ReplayPILDataset(MemoryConfigPIL()), loss_function, trainer_config) print('Running instance segmentation only pre-training') actor_config.instance_only = True loss_function.config.instance_only = True trainer_config.checkpoint_path = os.path.join( output_folder, args.checkpoint_prefix + 'inst_only_') model.toggle_mass_head(False) trainer.train() print('Training with force prediction') actor_config.instance_only = False
def main(): # load data docs, labels, tvt_idx = load_data() train_idx, val_idx, test_idx = tvt_idx model = None results = { "epochs": [], "average_train_loss": [], "average_val_loss": [], "average_test_acc": [], "split_amount": [], "acc": [] } # create model with vocab for entire dataset dataset = DocumentGraphDataset(docs, labels, tvt_idx) model = create_model(dataset) trainer = Trainer(dataset, model) for i in range(config["epochs"]): number_of_splits = random.randint(1, 40) # split in x random divisions split_train_amount = len(train_idx) // number_of_splits split_val_amount = len(val_idx) // number_of_splits split_test_amount = len(test_idx) // number_of_splits print("Splitting %i segments, %i %i %i" % (number_of_splits, split_train_amount, split_val_amount, split_test_amount)) # train on different random splits random.shuffle(train_idx) random.shuffle(val_idx) random.shuffle(test_idx) train_losses = [] val_losses = [] test_accs = [] for split_i in range(number_of_splits): split_train_idx = train_idx[split_i * split_train_amount:(split_i + 1) * split_train_amount] split_val_idx = val_idx[split_i * split_val_amount:(split_i + 1) * split_val_amount] split_test_idx = test_idx[split_i * split_test_amount:(split_i + 1) * split_test_amount] # this ain't right dataset = DocumentGraphDataset( docs, labels, (split_train_idx, split_val_idx, split_test_idx)) if model is None: model = create_model(dataset) trainer = Trainer(dataset, model) else: trainer.update_data(dataset) train_loss, val_loss = trainer.train_epoch() test_acc = trainer.test() print("split %02d: (%.4f, %.4f, ! %.4f !), " % (split_i, train_loss, val_loss, test_acc), end="") train_losses.append(train_loss) val_losses.append(val_loss) test_accs.append(test_acc) # test on entire graph dataset = DocumentGraphDataset(docs, labels, tvt_idx) trainer.update_data(dataset) test_acc = trainer.test() print("\n\n[epoch %02d] Test Acc on entire dataset %.4f\n\n" % (i, test_acc)) # summary results["epochs"].append(i) results["average_train_loss"].append( float(sum(train_losses) / len(train_losses))) results["average_val_loss"].append( float(sum(val_losses) / len(val_losses))) results["average_test_acc"].append( float(sum(test_accs) / len(test_accs))) results["split_amount"].append(number_of_splits) results["acc"].append(test_acc) df = pd.DataFrame(results) df.to_csv('./results/' + config['experiment_name'] + '.csv')