def sampleAndRunLoop(vidSource): (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') if int(major_ver) < 3: fps = vidSource.get(cv2.cv.CV_CAP_PROP_FPS) else: fps = vidSource.get(cv2.CAP_PROP_FPS) if fps == 0: fps = 24 sampleLen = getParam["SampleLength"] ret, frame = vidSource.read() sample = np.zeros((sampleLen, frame.shape[0], frame.shape[1], 3), dtype=np.uint8) idx = 0 pipeline = PipeLine(fps) while True: ret, frame = vidSource.read() if idx < sampleLen: sample[idx] = frame # continue else: # Slide sampling window sample = np.insert(sample[1:], -1, frame, axis=0) # Perform computation of frequency respiratoryRate = pipeline.run(sample) idx += 1 # Display result on the output image cv2.putText(frame, "Frame: %d, %d bps" % (idx, respiratoryRate), (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 0.7, (0, 20, 255)) cv2.imshow('output', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break
pipeline = PipeLine() pipeline.add_bg_step(ElasticInitBGStep({'kill_at_end': False})) pipeline.add_bg_step(VisualizerInitBGStep({'kill_at_end': False})) pipeline.add_pipe(TweetBinStep( { 'tweet-frequency': 'daily', 'tweet-format': 'csv', 'ignore-before': '2017-01-01' })) pipeline.add_pipe(FeatureExtractStep( { 'jar-path': '../jars/TextFeatureExtractor.jar', 'tweet-frequency': 'daily', 'query-params': [ 'lka', 'sri lanka', 'srilanka', 'flag', 'celebration', ] })) pipeline.add_pipe(IKASLStep( { 'jar-path': '../jars/IKASL.jar', 'tweet-frequency': 'daily', 'additional-args': {'htf': 0.02, '-max-nodes': 8} })) pipeline.add_pipe(LayerProcessStep({'tweet-frequency': 'daily'})) pipeline.add_pipe(ElasticFeedStep({'dataset-name': 'lka'})) # pipeline.run('../out/pipe_out/feature-extract-out') # pipeline.run('../out/pipe_out/ikasl-out') pipeline.run('../data/lka')