Пример #1
0
def get_exp_proportion(exp):
    study = v5.exp_to_study(exp)
    nonzero = pd.read_csv(decon_temp + 'nonzero_Weight_'
            + study + '.tsv', sep = '\t',index_col=0)
    
    exps = v5.study_to_exps(study)
    if len(exps) == 1:
        singleExp = True
    else:
        singleExp = False
 
    return get_proportion(exp, nonzero,singleExp)
Пример #2
0
def scatterplot(ax, exp, celltype, remove_study = False):
    study = v5.exp_to_study(exp)
    if remove_study:
        if not is_type_available(celltype, study):
            print("Cell type ({}) not provided in reference ".format(celltype)
                    + "matrix for this study.")
            return

    query = get_query_expression(exp)
    exp_list = v5.study_to_exps(study)
    reference = get_reference_expression(celltype, exp_list, remove_study)

    ax.scatter(reference[0], query)
    ax.set(xlim=(0, 450000), ylim=(0, 450000))
    diag_line, = ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c=".3") 
    xstick = np.arange(0, 450000 ,100000)
    ax.set_xticks(xstick)
    ax.set_yticks(xstick)  
    ax.set(xlabel = "{} ({} experiments)".format(co.get_term_name(celltype),
            reference[1]), ylabel = exp)
def multi_core(cell_exp_count, studies, exp_acc, gene_ids, countspermillion,
               qualified_cell_type_name, cell_type_file, qualified_cell_type):
    exp_acc_list = list(exp_acc)
    cell_types_selected = qualified_cell_type
    # Construct the noise added reference matrix
    reference_matrix = []
    select_study_list = {}
    for i in qualified_cell_type:
        tmp_exp = V5.celltype_to_exp(i)
        select_sample = random.choice(tmp_exp)
        select_study_list[i] = V5.exp_to_study(select_sample)
        exp_index = exp_acc_list.index(select_sample)
        reference_matrix.append(exp_index)

    # print(select_study_list)
    # Build the noise added reference matrix
    for i in range(len(reference_matrix)):
        if i == 0:
            reference = countspermillion[reference_matrix[i]]
        else:
            tmp = countspermillion[reference_matrix[i]]
            reference = np.vstack((reference, tmp))

    reference_noise = reference

    # Build the reference matrix
    reference_noise_free = []
    for i in range(len(qualified_cell_type)):
        tmp_exp = V5.celltype_to_exp(qualified_cell_type[i])
        tmp_ref = []
        # Since all cell type will be included, therefore we can simply using the previous one`
        for j in tmp_exp:
            # Only one study wll be chosen to construct the noisy reference, therefore using !=
            if V5.exp_to_study(j) != select_study_list[qualified_cell_type[i]]:
                tmp_ref.append(exp_acc_list.index(j))

        for j in range(len(tmp_ref)):
            if j == 0:
                reference = countspermillion[tmp_ref[j]]
            else:
                tmp = countspermillion[tmp_ref[j]]
                reference = np.vstack((reference, tmp))

        if len(tmp_ref) > 1:
            ref_mean = np.mean(reference, axis=0)
        else:
            ref_mean = reference

        reference_noise_free.append(ref_mean)

    reference_noise_free_np = np.array(reference_noise_free)
    signature_np = np.transpose(reference_noise_free_np)
    reference_noise_np = reference_noise.copy()
    signature_noise_np = np.transpose(reference_noise_np)
    # signature_temp = signature_np.copy()

    # Transform to pandas
    signature_np = signature_np.transpose()
    signature_noise_np = signature_noise_np.transpose()

    signature_pd = pd.DataFrame(data=signature_np,
                                columns=gene_ids,
                                index=qualified_cell_type_name)
    signature_noise_np_pd = pd.DataFrame(
        data=signature_noise_np,
        columns=gene_ids,
        index=[co.get_term_name(i) for i in qualified_cell_type])

    # Save the signature and noisy signature for future analysis
    signature_pd.to_csv('~/IndependentStudy/Data/SignatureSimulation/' +
                        str(cell_exp_count) + '_signature.tsv',
                        sep='\t')
    signature_noise_np_pd.to_csv(
        '~/IndependentStudy/Data/SignatureSimulation/' + str(cell_exp_count) +
        '_signature_noise.tsv',
        sep='\t')

    # Build the variance data set
    # Eliminate the redundant cell type in all exp
    cell_type_specific_file = {}
    for i in cell_type_file:
        cell_type_specific_file[i] = co.get_terms_without_children(
            cell_type_file[i])

    # Build the exp to study check dictionary
    studyexpMap = {}
    expstudyMap = {}
    for i in range(len(exp_acc)):
        expstudyMap[exp_acc[i]] = studies[i]
        if studies[i] not in studyexpMap:
            studyexpMap[studies[i]] = [exp_acc[i]]
        else:
            studyexpMap[studies[i]].append(exp_acc[i])

    # Build the variance matrix
    variance_matrix = []
    cell_types_48 = []

    for cell_co in range(len(cell_types_selected)):
        # Get the cell type
        cellExpDict = {}
        for i in cell_type_specific_file:
            if cell_types_selected[cell_co] in cell_type_specific_file[i]:
                cellExpDict[i] = [cell_types_selected[cell_co]]

        # cell type specific Exp to Study dictionary
        expPerStudy = []
        keys = list(cellExpDict.keys())
        # print(keys)
        studyList = []
        for i in keys:
            if expstudyMap[i] not in studyList:
                studyList.append(expstudyMap[i])
                expPerStudy.append(i)
            else:
                continue

        tmp_exp_study = {}
        for i in cellExpDict.keys():
            if expstudyMap[i] not in tmp_exp_study.keys():
                tmp_exp_study[expstudyMap[i]] = [i]
            else:
                tmp_exp_study[expstudyMap[i]].append(i)

        # Get the within study variance
        # Generate the mean profile
        tmp_mean = []
        within_study_var = []
        # Build the exp expression matrix
        # print(tmp_exp_study.items())

        for j in tmp_exp_study.items():
            # print(select_study_list[cell_types_selected[cell_co]])
            # print(j[0])
            if j[0] not in select_study_list[cell_types_selected[cell_co]]:
                # Garb the cell index
                specific_cell_exp_index = []
                for i in range(len(exp_acc)):
                    if exp_acc[i] in j[1]:
                        specific_cell_exp_index.append(i)
                    else:
                        continue

                specific_cell_exp_signature = get_signatures(
                    specific_cell_exp_index, countspermillion)

                # Generate the cell_type specific mean (j[1] is a tuple), tmp_mean consist study mean
                if len(j[1]) == 1:
                    tmp_mean.append(specific_cell_exp_signature)
                else:
                    tmp_mean.append(
                        np.mean(specific_cell_exp_signature, axis=1))

                # Calculate the residue (if j[1] > 1)
                if len(j[1]) > 1:
                    tmp_residue_list = []
                    for index in specific_cell_exp_index:
                        tmp_exp = get_signatures([index], countspermillion)
                        tmp_residue = np.abs(
                            tmp_exp -
                            np.mean(specific_cell_exp_signature, axis=1))
                        tmp_residue_list.append(tmp_residue)

                    # Construct the within study variance
                    tmp_residue_list = np.array(tmp_residue_list)
                    within_study_var.append(np.var(tmp_residue_list, axis=0))
                else:
                    within_study_var.append(
                        np.zeros(specific_cell_exp_signature.shape[0]))
            else:
                continue

        cell_types_48 += tmp_mean
        within_study_var = np.array(within_study_var)

        # Construct the study variance
        tmp_mean = np.array(tmp_mean)
        study_variance = np.var(tmp_mean, axis=0)

        # We assume variance sum law here
        total_variance = np.zeros(study_variance.shape[0])
        total_variance = total_variance + study_variance

        for i in within_study_var:
            total_variance = total_variance + i

        variance_matrix.append(total_variance)

    variance_matrix = np.array(variance_matrix)
    print(variance_matrix.shape)
    os.system("touch " + '~/IndependentStudy/Data/Variance/' +
              str(cell_exp_count) + '_variance.txt')
    np.savetxt('/ua/shi235/IndependentStudy/Data/Variance/' +
               str(cell_exp_count) + '_variance.txt',
               variance_matrix,
               delimiter="\t")