Пример #1
0
    def __init__(self, q1, q2):
        self.queue_MAIN_2_VS = q1
        self.queue_VS_2_STM = q2
        self.resolution = (320, 240)
        self.video_stream = PiVideoStream(self.resolution, 60)

        self.settings = {
            'disp': False,
            'dispThresh': False,
            'dispContours': False,
            'dispApproxContours': False,
            'dispVertices': False,
            'dispNames': False,
            'dispCenters': False,
            'dispTHEcenter': False,
            'erodeValue': 0,
            'lowerThresh': 40,
            'working': True,
            'autoMode': False,
            'dispGoal': True
        }

        self.prevStateDisp = self.settings['disp']
        self.prevStateDispThresh = self.settings['dispThresh']

        self.objs = []

        self.classLogger = logging.getLogger('droneNav.VisionSys')

        self.working = True
        self.t = Thread(target=self.update, args=())
        self.t.daemon = True
Пример #2
0
def picamera_ndvi(preview=False, resolution=(640, 480), framerate=60):
    stream = PiVideoStream(resolution=resolution, framerate=framerate).start()
    time.sleep(2)
    print('Video stream started.')

    directory = 'capture_' + str(get_time_ms()) + '/'

    # loop over the frames from the video stream indefinitely
    while True:
        # grab the frame from the threaded video stream
        frame = stream.read()
        if frame is not None:
            b, g, r = cv2.split(frame)
            # get NDVI from RGB image
            ndvi = vegevision.get_ndvi(b, r)
            ndvi_colorized = apply_custom_colormap(
                255 * ndvi.astype(np.uint8),
                cmap=vegevision.load_cmap('NDVI_VGYRM-lut.csv'))
            # show the frame
            if preview:
                cv2.imshow("Video Input with NDVI", ndvi_colorized)
                print('Displaying NDVI...')
            else:
                save_image(ndvi, directory=directory)

        # if the `q` key was pressed, break from the loop
        key = cv2.waitKey(1) & 0xFF
        if key == ord("q"):
            break

    # do a bit of cleanup
    cv2.destroyAllWindows()
    stream.stop()
Пример #3
0
    def __init__(self,
                 src=0,
                 usePiCamera=False,
                 resolution=(370, 290),
                 framerate=32):
        if usePiCamera:
            from pivideostream import PiVideoStream

            self.stream = PiVideoStream(resolution=resolution,
                                        framerate=framerate)

        else:
            self.stream() = WebcamVideoStream(src=src)
Пример #4
0
 def __init__(self, resolution=(320, 240), framerate=32):
     self.conf = json.load(open("conf.json"))
     self.lt = LocalTime("Baltimore")
     self.avg = None
     self.avg_count = 0
     self.motionCounter = 0
     self.motion_frames = []
     self.x = 0
     self.y = 0
     self.w = 0
     self.h = 0
     self.contour_area = 0
     self.vs = PiVideoStream(resolution, framerate).start()
     time.sleep(self.conf["camera_warmup_time"])
Пример #5
0
    def __init__(self,
                 src=0,
                 usePiCamera=False,
                 resolution=(320, 240),
                 framerate=32):
        # check to see if the picamera module should be used
        # if usePiCamera:
        # only import the picamera packages unless we are
        # explicity told to do so -- this helps remove the
        # requirement of `picamera[array]` from desktops or
        # laptops that still want to use the `imutils` package
        from pivideostream import PiVideoStream

        # initialize the picamera stream and allow the camera
        # sensor to warmup
        self.stream = PiVideoStream(resolution=resolution, framerate=framerate)
Пример #6
0
    def __init__(self,
                 src=0,
                 usePiCamera=False,
                 resolution=(320, 240),
                 framerate=60):
        if usePiCamera:
            from pivideostream import PiVideoStream

            self.stream = PiVideoStream(resolution=resolution,
                                        framerate=framerate)

        else:
            self.stream = WebcamVideoStream(src=src)

        def start(self):
            return self.stream.start()

        def update(self):
            self.stream.update()

        def read(self):
            return self.stream.read()

        def stop(self):
            self.stream.stop()
Пример #7
0
    def __init__(self,
                 src=0,
                 isPiCamera=False,
                 resolution=(320, 240),
                 framerate=32):

        if isPiCamera:
            from pivideostream import PiVideoStream

            self.stream = PiVideoStream(resolution=resolution,
                                        framerate=framerate)

        else:
            from usbvideostream import usbVideoStream

            self.stream = usbVideoStream(src, resolution=resolution)
class VideoCamera(object):
    def __init__(self, flip=False, fps=10, res=(160, 128)):
        self.vs = PiVideoStream(resolution=res, framerate=fps).start()
        self.flip = flip
        print("cam init")
        time.sleep(2.0)

    def __del__(self):
        print("cam del")
        self.vs.stop()

    def flip_if_needed(self, frame):
        if self.flip:
            return np.flip(frame, 0)
        return frame

    def get_frame(self):
        frame = self.flip_if_needed(self.vs.read())
        ret, png = cv2.imencode('.png', frame)
        return png.tobytes()
Пример #9
0
class VideoStream:
    def __init__(self,
                 src=0,
                 isPiCamera=False,
                 resolution=(320, 240),
                 framerate=32):

        if isPiCamera:
            from pivideostream import PiVideoStream

            self.stream = PiVideoStream(resolution=resolution,
                                        framerate=framerate)

        else:
            from usbvideostream import usbVideoStream

            self.stream = usbVideoStream(src, resolution=resolution)

    def start(self):
        return self.stream.start()

    def update(self):
        self.stream.update()

    def read(self):
        return self.stream.read()

    def stop(self):
        self.stream.stop()
	def __init__(self, src=0, usePiCamera=False, resolution=(720, 480),
		framerate=32):
		if usePiCamera:
			# only import this package if using PiCamera
			from pivideostream import PiVideoStream
 
			self.stream = PiVideoStream(resolution=resolution,
				framerate=framerate)
 
		# otherwise, we are using OpenCV so initialize the webcam
		# stream
		else:
			self.stream = WebcamVideoStream(src=src)
Пример #11
0
 def __init__(self,
              src=0,
              usePiCamera=False,
              resolution=(320, 240),
              framerate=32):
     # pycam modulu ?*
     if usePiCamera:
         # gerekli kurulum
         from pivideostream import PiVideoStream
         self.stream = PiVideoStream(resolution=resolution,
                                     framerate=framerate)
     # else
     else:
         self.stream = WebcamVideoStream(src=src)
Пример #12
0
	def __init__(self, src=0, usePiCamera=False, resolution=(320, 240),
		framerate=32):
		# check to see if the picamera module should be used
		if usePiCamera:
			# only import the picamera packages unless we are
			# explicity told to do so -- this helps remove the
			# requirement of `picamera[array]
			from pivideostream import PiVideoStream

			# initialize the picamera stream and allow the camera
			# sensor to warmup
			self.stream = PiVideoStream(resolution=resolution,
				framerate=framerate)

		# otherwise, we are using OpenCV so initialize the webcam
		# stream
		else:
			self.stream = WebcamVideoStream(src=src)
Пример #13
0
	def __init__(self, src=0,usePiCamera=False, resolution=(320,240),framerate=32):
		#check to see if the picamera module should be used
		if usePiCamera:
			from pivideostream import PiVideoStream
			self.stream = PiVideoStream(resolution=resolution, framerate=framerate)
		else:
			self.stream = WebcamVideoStream(src=src)
			
		def start(self):
			#start the threaded video stream
			return self.stream.start()
		
		def update(self):
			#grab the next frame from the stream
			self.stream.update()
			
		def read(self):
			#return the current frame
			return self.stream.read()
		
		def stop(self):
			# stop the thread and release any resources
			self.stream.stop()
Пример #14
0
class VideoStream:
    def __init__(self,
                 src=0,
                 usePiCamera=False,
                 resolution=(320, 240),
                 framerate=32,
                 **kwargs):
        # check to see if the picamera module should be used
        if usePiCamera:
            # only import the picamera packages unless we are
            # explicity told to do so -- this helps remove the
            # requirement of `picamera[array]` from desktops or
            # laptops that still want to use the `imutils` package
            from pivideostream import PiVideoStream

            # initialize the picamera stream and allow the camera
            # sensor to warmup
            self.stream = PiVideoStream(resolution=resolution,
                                        framerate=framerate,
                                        **kwargs)

        # otherwise, we are using OpenCV so initialize the webcam
        # stream

    def start(self):
        # start the threaded video stream
        return self.stream.start()

    def update(self):
        # grab the next frame from the stream
        self.stream.update()

    def read(self):
        # return the current frame
        return self.stream.read()

    def stop(self):
        # stop the thread and release any resources
        self.stream.stop()
Пример #15
0
def main():
    vs = PiVideoStream()
    vs.start()
    time.sleep(2.0)
    vs.consistent()

    setup_trackbars(range_filter)
    cv2.namedWindow("Original", cv2.WINDOW_NORMAL)
    cv2.namedWindow("Thresh", cv2.WINDOW_NORMAL)

    while True:
        image = vs.read()
        frame_to_thresh = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

        v1_min, v2_min, v3_min, v1_max, v2_max, v3_max = get_trackbar_values(range_filter)
        thresh = cv2.inRange(frame_to_thresh,(v1_min, v2_min, v3_min),(v1_max, v2_max, v3_max))

        cv2.imshow("Original", image)
        cv2.imshow("Thresh", thresh)

        if cv2.waitKey(1) & 0xFF is ord('q'):
            break
Пример #16
0
def main(argv):	
	#todo: crop xy threshold, pipette, mask, contours 
	use_gui=0
	simulate=0
	try: 
			opts, args =getopt.getopt(sys.argv[1:], "g:s:",["gui=","sim="])
	except getopt.GetoptError as err:
		usage()
		sys.exit(2)
	#print("opts: ",opts)
	#print("args: ",sys.argv[1:])
	if len(opts)<1:
		use_gui=0
		simulate=0
	for o,a, in opts:
		if o=="-g":
			use_gui=int(a)
		elif o=="-s":
			simulate=int(a)
		
	t_gui=Thread(target=guiThread)
	if use_gui>0: 
		t_gui.start()
	else:
		load_settings()
		#print("set guiCommands nogui:",guiCommands)
		guiCommands['previewRaw']=False
	if simulate==0:
		import RPi.GPIO as GPIO
		from pivideostream import PiVideoStream
		#vs = PiVideoStream((1296, 736)).start()
		vs = PiVideoStream((1920, 1088)).start()
		time.sleep(2)
	runVideo=True
	imageCounter=0
	#print("picSavePath: ",picSavePath)
	while (runVideo==True):
		#print("mainloop")
		runVideo=guiCommands['runVideo']
		if simulate==0:
			grabbedFrame = vs.readCropped(guiCommands['cropleft'],guiCommands['croptop'],guiCommands['cropright'],guiCommands['cropbottom'])
		else:
			grabbedFrame=cv2.imread("images/image_001.png", -1)
			#runVideo=False
		if guiCommands['takePic']==True and simulate==0:
			filename="images/image_"+str(imageCounter).zfill(3)+".png"
			cv2.imwrite(filename, grabbedFrame)
			imageCounter+=1
			guiCommands['takePic']=False
		Live=ContourOperations()
		frame_hsv= cv2.cvtColor(grabbedFrame,cv2.COLOR_BGR2HSV)
		lower_red=np.array([guiCommands['lowerhue'],guiCommands['lowersat'],guiCommands['lowerval']])
		upper_red=np.array([guiCommands['upperhue'],guiCommands['uppersat'],guiCommands['upperval']])
		mask=cv2.inRange(frame_hsv, lower_red, upper_red)
		filtered= cv2.bitwise_and(grabbedFrame, grabbedFrame, mask=mask)
		blue, green, red = cv2.split(grabbedFrame)
		background=cv2.imread("background/image_000.png", -1)
		#bluebg, greenbg, redbg = cv2.split(grabbedFrame)
		#redOnly=Live.computeRedMinusGB(grabbedFrame)
		#red_Threshold=Live.computeThreshold(redOnly, guiCommands['threshold'])
		#redThresContour=red_Threshold.copy()
		#contour_ext=Live.get_selected_contour(mask, 0)
		
		if guiCommands['previewRaw']==True: 
			cv2.imshow('All',grabbedFrame)
			cv2.imshow('Mask',mask)
			cv2.imshow('Filtered',filtered)
			#cv2.imshow('All-BG',cv2.subtract(grabbedFrame,background))
			#Live.showContour(grabbedFrame, contour_ext)
			#cv2.imshow('red',red_Threshold)
			#cv2.imshow('RedOnly',redOnly)
			'''
			red=Live.showRed(False)
			#print("Type grabbedFrame",grabbedFrame.dtype())
			green=Live.showGreen(False)
			blue=Live.showBlue(False)
			#cv2.imshow('Red-Green',red-green)
			#cv2.imshow('Red-Blue',red-blue)
			#cv2.imshow('Red-Blue-Green',red-blue-green)
			Live.showPixelValue(cv2.subtract(cv2.subtract(red,blue),green),60,95, 'r-b-g')
			Live.showPixelValue(red-blue,60,95, 'r-b')
			Live.showPixelValue(red,60,95, 'r')
			Live.showPixelValue(red-green,60,95, 'r-g')
			red[95][60]=red[95][60]-65
			Live.showPixelValue(red,60,95, 'r new')
			Live.showPixelValue(red-green,60,95, 'r-g new')
			'''
		else:
			cv2.destroyAllWindows()
		if cv2.waitKey(1) & 0xFF == ord('q'):
			runVideo=False
			break
Пример #17
0
"""
    Lecture et affichage de la video
"""
from pivideostream import PiVideoStream
from imutils.video import FPS # Pour les mesures de framerate
import cv2
import time
import numpy as np

# Nom de la fenetre d'affichage
window_name = 'preview'

# Creation du thread de lecture + setup
vs=PiVideoStream()
vs.camera.video_stabilization = True
# Demarrage du flux video + warmup de la camera
vs.start()
time.sleep(2.0)

# Creation de la fenetre d'affichage
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)

fps = FPS().start()

while True :

    frame = vs.read()
    fps.update()

    cv2.imshow(window_name, frame) 
    key = cv2.waitKey(1) & 0xFF
Пример #18
0
def main():
    pwm = PWM(0x40)
    pwm.setPWMFreq(100)
    vs = PiVideoStream(resolution=(640, 480)).start()
    time.sleep(1.0)
    frame = vs.read()
    prvs = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    hsv = np.zeros_like(frame)
    hsv[..., 1] = 255
    mode = 0
    speed = 0
    steer = 0

    while True:
        frame = vs.read()
        #frame = rotate_image(frame)
        next = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        if mode == 3:
            flow = cv2.calcOpticalFlowFarneback(prvs, next, 0.5, 3, 15, 3, 5,
                                                1.2, 0)
            mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
            hsv[..., 0] = ang * 180 / 3.14 / 2
            hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
            bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

        cv2.putText(frame, "Speed: {}, Steer: {}".format(speed, steer),
                    (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0))
        if mode == 1:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        if mode == 2:
            frame = cv2.Canny(frame, 20, 100)
        if mode == 3:
            cv2.imshow("Frame", bgr)
        else:
            cv2.imshow("Frame", frame)

        key = cv2.waitKey(1) & 0xFF
        if key == ord("q"):
            break
        if key == ord("f"):
            mode = 3
        if key == ord("e"):
            mode = 2
        if key == ord("g"):
            mode = 1
        if key == ord("c"):
            mode = 0
        if key == ord("l"):
            pwm.setPWM(0, 0, 500)
        if key == ord("r"):
            pwm.setPWM(0, 0, 300)
        if key == 81:  # left
            if steer > -1:
                steer = steer - 0.1
        if key == 83:  # right
            if steer < 1:
                steer = steer + 0.1
        if key == 82:  # up
            if speed < 1:
                speed = speed + 0.1
        if key == 84:  # down
            if steer > -1:
                speed = speed - 0.1
        if key == ord("s"):
            speed = 0
            steer = 0
        pwm.setPWM(0, 0, 500 + int(speed * 100))
        pwm.setPWM(2, 0, 670 - int(steer * 100))
        prvs = next

    cv2.destroyAllWindows()
    vs.stop()
Пример #19
0
# import the necessary packages
from pivideostream import PiVideoStream
import datetime
import imutils
import time
import cv2
import numpy as np

death = 0.0
temp = 0
counter = 0

cond = False

# initialize the video stream and allow the cammera sensor to warmup
vs = PiVideoStream(resolution=(320, 240), framerate=32)
vs.start()
time.sleep(2.0)

start_time = time.time()

while (True):
    elapsed_time = time.time() - start_time
    elap = time.strftime("%H:%M:%S", time.gmtime(elapsed_time))

    onset = time.time()

    # grab the frame from the threaded video stream and resize it
    # to have a maximum width of 400 pixels
    frame = vs.read()
    frame = imutils.resize(frame, width=400)
Пример #20
0
    configs.set("span_l",span_l)
    configs.set("span_s",span_s)

# def update_command(, center)

if flag_display:
    cv2.namedWindow("plots")
    cv2.createTrackbar("H","plots",span_h,255,update_trackbars)
    cv2.createTrackbar("L","plots",span_l,255,update_trackbars)
    cv2.createTrackbar("S","plots",span_s,255,update_trackbars)


# initialize and configure camera module
if(flag_raspberry>0):
    print("Starting Raspberry Pi Camera module Thread")
    vs = PiVideoStream().start()
else:
    print "Start OpenCV Video Capture module"
    vs = cv2.VideoCapture(0)
time.sleep(2.0)
try:
    while True:
        # store fps
        timer_list =[]
        timer_list.append(["FPS",int(cv2.getTickFrequency()/(cv2.getTickCount() - loop_timer_start))])
        loop_timer_start = cv2.getTickCount()

        finger_list_filtered = []
        finger_num = 0
        contour_solidity = 0
        center = (0,0)
Пример #21
0
    img1 = cv2.imread(fn1, 0)
    """
    camera = PiCamera()
    #camera.resolution = (640, 480)
    #camera.framerate = 32
    rawCapture = PiRGBArray(camera)
    #rawCapture = io.BytesIO()

    time.sleep(0.1)

    """

    # initialize the picamera stream and allow the camera
    # sensor to warmup
    stream = PiVideoStream(resolution=(640, 480), framerate=32)

    vs = stream.start()
    time.sleep(2.0)

    img1 = resize(img1, preferred_dimensions=(640, 480))

    kp = detector.detect(img1, None)

    kp, desc = compute.compute(img1, kp)

    count = 0
    start_time = timer()

    frame = vs.read()
Пример #22
0
import cv2  # Librairie OpenCV
import time # Fonctions temporelles
import serial

# Demarre la communication sur le port série
ser = serial.Serial('/dev/ttyACM0',9600)

# Fenetre d'affichage de la "vue" du robot
cv2.namedWindow('preview', cv2.WINDOW_NORMAL)

# Definition des seuils HSV pour le vert
greenLower = (90, 70, 90)
greenUpper = (105, 255, 255)

# Demarage du flux video sur un thread different
vs = PiVideoStream()
vs.start()
# Laisse le temps de chauffer a la camera
time.sleep(2)
vs.consistent()
print("Demarrage")

# Boucle principale 
while True :
    frame = vs.read()
    # Convertis la frame en HSV
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    # Construis un masque pour la couleur définie
    mask = cv2.inRange(hsv, greenLower, greenUpper)

    mask = cv2.erode(mask, None, iterations = 4)  
Пример #23
0
from constantes import *

#Load model
model = load_model(sys.argv[1])
print("Model loaded")

# Init engines and hat
i2c = busio.I2C(board.SCL, board.SDA)
hat = adafruit_pca9685.PCA9685(i2c)
kit = ServoKit(channels=16)

hat.frequency = 50
kit.servo[0].angle = 100
kit.servo[1].angle = 100    

vs = PiVideoStream().start()
time.sleep(2.0)

from PIL import Image
frame = vs.read()
img = Image.fromarray(frame)
img.save("test.png")

was_direction = 0

# Starting loop
print("Ready ! press CTRL+C to START/STOP :")

try:
    
    while True:
Пример #24
0
from flask import Flask, render_template, Response, request, jsonify
from flask_basicauth import BasicAuth
from pivideostream import PiVideoStream
from picamera import PiCamera
from picamera.array import PiRGBArray
import numpy as np
import cv2
import time
from servo_manager import ServoManager
from motor_manager import MotorManager
#import urllib.request, urllib.parse

try:
    # video steam
    vs = PiVideoStream().start()

    # vertical axis aiming servo
    servo = ServoManager(11)
    servo.setAngleInDegrees(90)

    # horizontal axis aiming motor
    motor = MotorManager(16, 18, 22)

    # update public ip on main site for easy access
    #data = {}
    #data['new'] = 'remote_password'
    #url_values = urllib.parse.urlencode(data)
    #url = 'remote page for receiving ip update'
    #full_url = url + '?' + url_values
    #data = urllib.request.urlopen(full_url)
Пример #25
0
class VideoCamera(object):
    def __init__(self, resolution=(320, 240), framerate=32):
        self.conf = json.load(open("conf.json"))
        self.lt = LocalTime("Baltimore")
        self.avg = None
        self.avg_count = 0
        self.motionCounter = 0
        self.motion_frames = []
        self.x = 0
        self.y = 0
        self.w = 0
        self.h = 0
        self.contour_area = 0
        self.vs = PiVideoStream(resolution, framerate).start()
        time.sleep(self.conf["camera_warmup_time"])

    def hflip(self, hflip=True):
        self.vs.hflip(hflip)

    def vflip(self, vflip=True):
        self.vs.vflip(vflip)

    def rotation(self, angle=0):
        self.vs.rotation(angle)

    def exposure_mode(self, exposure_mode="auto"):
        self.vs.exposure_mode(exposure_mode)

    def iso(self, iso=0):
        self.vs.iso(iso)

    def shutter_speed(self, speed):
        self.vs.shutter_speed(speed)

    def change_framerate(self, framerate=32):
        self.vs.stop(stop_camera=False)
        time.sleep(self.conf["camera_cooldown_time"])
        self.vs.camera.framerate = framerate
        self.vs.shutter_speed(0)
        self.vs.start()
        time.sleep(self.conf["camera_warmup_time"])
        self.avg_count = 0

    def __del__(self):
        self.vs.stop(stop_camera=True)

    def get_frame(self):
        frame = self.vs.read().copy()
        framerate = self.vs.camera.framerate
        # draw the text and timestamp on the frame
        timestamp = self.lt.now()
        ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p")
        cv2.putText(frame, ts, (10, frame.shape[0] - 10),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)
        cv2.putText(
            frame, "Motion on: {}; FPS: {}; Contour area: {}".format(
                self.avg_count == self.conf["camera_adjustment_frames"],
                framerate, self.contour_area), (10, 20),
            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
        if self.w > 0:
            cv2.rectangle(frame, (self.x, self.y),
                          (self.x + self.w, self.y + self.h), (0, 255, 0), 2)
        ret, jpeg = cv2.imencode('.jpg', frame)
        return jpeg.tobytes()

    def get_object(self):
        frame = self.vs.read().copy()
        timestamp = self.lt.now()
        ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p")
        found_obj = False

        frame = imutils.resize(frame, width=500)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (21, 21), 0)

        if self.avg is None or self.avg_count < self.conf[
                "camera_adjustment_frames"]:
            self.avg = gray.copy().astype("float")
            self.avg_count += 1
            if self.avg_count == self.conf["camera_adjustment_frames"]:
                print("[INFO] motion detector live...")
            return (None, False)

        cv2.accumulateWeighted(gray, self.avg, 0.5)
        frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg))

        # threshold the delta image, dilate the thresholded image to fill
        # in holes, then find contours on thresholded image
        thresh = cv2.threshold(frameDelta, self.conf["delta_thresh"], 255,
                               cv2.THRESH_BINARY)[1]
        thresh = cv2.dilate(thresh, None, iterations=2)
        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                                cv2.CHAIN_APPROX_SIMPLE)
        cnts = cnts[0] if imutils.is_cv2() else cnts[1]

        # loop over the contours
        for c in cnts:
            # if the contour is too small, ignore it
            ca = cv2.contourArea(c)
            self.contour_area = ca
            if ca < self.conf["min_area"]:
                continue

            # compute the bounding box for the contour, draw it on the frame,
            # and update found_obj
            (self.x, self.y, self.w, self.h) = cv2.boundingRect(c)
            cv2.rectangle(frame, (self.x, self.y),
                          (self.x + self.w, self.y + self.h), (0, 255, 0), 2)
            found_obj = True

        # check to see if the room is occupied
        if found_obj:
            print("[INFO] found object!")
            # increment the motion counter
            self.motionCounter += 1
            cv2.putText(frame, ts, (10, frame.shape[0] - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)
            self.motion_frames.append(frame)

            # check to see if the number of frames with consistent motion is
            # high enough
            if self.motionCounter >= self.conf["min_motion_frames"]:
                print("[INFO] occupied!")
                self.motionCounter = 0
                vis = np.concatenate(self.motion_frames, axis=0)
                return (vis, found_obj)

            return (None, False)

        # otherwise, the room is not occupied
        else:
            (self.x, self.y, self.w, self.h) = (0, 0, 0, 0)
            self.contour_area = 0
            self.motionCounter = 0
            self.motion_frames = []
            return (None, False)
Пример #26
0
#!/usr/bin/env python
# coding=utf-8
import cv2
import time
#from settings import *
#from picamera.array import PiRGBArray
#from picamera import PiCamera
from pivideostream import PiVideoStream
vs = PiVideoStream((1920, 1088)).start()
time.sleep(1)
#time.sleep(3)
runVideo = True
#vs.SetParam()
while (runVideo == True):
    #for i in range(0,3):
    frame = vs.readCropped(20, 36, 44, 15)
    #frame = vs.read()
    #qprint("shape:",frame.shape[:2])
    cv2.imshow('Test', frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        runVideo = False
        break
    time.sleep(0.1)
    #runVideo=False
Пример #27
0
class VisionSystem:
    """docstring for visionSystem"""
    def __init__(self, q1, q2):
        self.queue_MAIN_2_VS = q1
        self.queue_VS_2_STM = q2
        self.resolution = (320, 240)
        self.video_stream = PiVideoStream(self.resolution, 60)

        self.settings = {
            'disp': False,
            'dispThresh': False,
            'dispContours': False,
            'dispApproxContours': False,
            'dispVertices': False,
            'dispNames': False,
            'dispCenters': False,
            'dispTHEcenter': False,
            'erodeValue': 0,
            'lowerThresh': 40,
            'working': True,
            'autoMode': False,
            'dispGoal': True
        }

        self.prevStateDisp = self.settings['disp']
        self.prevStateDispThresh = self.settings['dispThresh']

        self.objs = []

        self.classLogger = logging.getLogger('droneNav.VisionSys')

        self.working = True
        self.t = Thread(target=self.update, args=())
        self.t.daemon = True

    def start(self):
        self.classLogger.debug('Starting vision system.')
        self.video_stream.start()
        time.sleep(2)
        self.working = True
        self.t.start()
        return

    def stop(self):
        self.working = False
        self.t.join()
        return

    def update(self):
        while 1:
            if self.working is False:
                break

            if self.queue_MAIN_2_VS.empty():
                pass
            if not self.queue_MAIN_2_VS.empty():
                self.settings = self.queue_MAIN_2_VS.get()
                self.queue_MAIN_2_VS.task_done()

            frame = self.video_stream.read()
            frame_processed = self.process_frame(frame, self.settings)
            self.detect_shapes(frame, frame_processed)

            if self.settings['disp'] is False and self.prevStateDisp is False:
                pass
            if self.settings['disp'] is True and self.prevStateDisp is False:
                cv2.namedWindow('Frame')
                key = cv2.waitKey(1) & 0xFF
                # cv2.startWindowThread()
            elif self.settings['disp'] is True and self.prevStateDisp is True:
                key = cv2.waitKey(1) & 0xFF
                cv2.imshow('Frame', frame)
            elif self.settings['disp'] is False and self.prevStateDisp is True:
                cv2.destroyWindow('Frame')

            if self.settings[
                    'dispThresh'] is False and self.prevStateDispThresh is False:
                pass
            if self.settings[
                    'dispThresh'] is True and self.prevStateDispThresh is False:
                cv2.namedWindow('Processed')
                key = cv2.waitKey(1) & 0xFF
                # cv2.startWindowThread()
            elif self.settings[
                    'dispThresh'] is True and self.prevStateDispThresh is True:
                key = cv2.waitKey(1) & 0xFF
                cv2.imshow('Processed', frame_processed)
            elif self.settings[
                    'dispThresh'] is False and self.prevStateDispThresh is True:
                cv2.destroyWindow('Processed')

            if self.settings['dispThresh'] or self.settings['disp']:
                if key == 27:
                    self.video_stream.stop()

            self.prevStateDisp = self.settings['disp']
            self.prevStateDispThresh = self.settings['dispThresh']

            # send objects to state machine
            self.queue_VS_2_STM.put(self.objs)

        cv2.destroyAllWindows()
        self.video_stream.stop()
        self.classLogger.debug('Ending vision system.')

    def process_frame(self, fr, setts):
        """ Takes frame and processes it based on settings. """
        # frame = imutils.resize(frame, width=600)
        # fr = cv2.flip(fr, 0)
        # frame = cv2.copyMakeBorder(frame, 3, 3, 3, 3,
        #                            cv2.BORDER_CONSTANT,
        #                            value=(255, 255, 255))
        frameGray = cv2.cvtColor(fr, cv2.COLOR_BGR2GRAY)
        frameBlurred = cv2.GaussianBlur(frameGray, (7, 7), 0)
        frameThresh = cv2.threshold(frameBlurred, setts['lowerThresh'], 255,
                                    cv2.THRESH_BINARY_INV)[1]
        frameThresh = cv2.erode(frameThresh,
                                None,
                                iterations=setts['erodeValue'])
        frameThresh = cv2.dilate(frameThresh,
                                 None,
                                 iterations=setts['erodeValue'])
        frameThresh = cv2.copyMakeBorder(frameThresh,
                                         3,
                                         3,
                                         3,
                                         3,
                                         cv2.BORDER_CONSTANT,
                                         value=(0, 0, 0))
        frameFinal = frameThresh

        return frameFinal

    def draw_cntrs_features(self, fr, setts, obj):
        """
        Takes frame, settings, objects list and draws features (contours,
        names, vertives, centers) on frame.
        """
        if setts['dispContours']:
            cv2.drawContours(fr, [obj['contour']], -1, (255, 255, 0), 1)
        if setts['dispApproxContours']:
            cv2.drawContours(fr, [obj['approx_cnt']], -1, (0, 255, 0), 1)
        if setts['dispNames']:
            cv2.putText(fr, obj['shape'] + str(obj['approx_cnt_area']),
                        obj['center'], cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (255, 255, 255), 1)
        if setts['dispVertices']:
            for i in range(0, len(obj['verts'])):
                cv2.circle(fr, tuple(obj['verts'][i]), 4, (255, 100, 100), 1)
        if setts['dispCenters']:
            cv2.circle(fr, (obj['center']), 2, (50, 255, 50), 1)

    def detect_shapes(self, frameOriginal, frameProcessed):
        """
        This functiion simplifies the contour, identifies shape by name,
        unpacks vertices, computes area. Then it returns a dictionary with
        all of this data.

        :param c: Contour to be approximated.
        :type c: OpenCV2 contour.
        :returns: dictionary -- shape name, vertices, approximated contour,
        approximated area.
        :rtype: dictionary.
        """

        # #####################################################################
        # FIND COUNTOURS
        # #####################################################################
        cnts = cv2.findContours(frameProcessed.copy(), cv2.RETR_EXTERNAL,
                                cv2.CHAIN_APPROX_SIMPLE)
        cnts = cnts[0] if imutils.is_cv2() else cnts[1]

        # #####################################################################
        # ANALYZE CONTOURS
        # #####################################################################

        # clear list
        self.objs = []

        for index, c in enumerate(cnts):
            verts = []
            vrt = []

            # #################################################################
            # SIMPLIFY CONTOUR
            # #################################################################
            perimeter = cv2.arcLength(c, True)
            approx_cnt = cv2.approxPolyDP(c, 0.04 * perimeter, True)

            # #################################################################
            # GET CONTOUR AREA
            # #################################################################
            approx_cnt_area = cv2.contourArea(approx_cnt)

            # #################################################################
            # GETTING THE VERTICES COORDINATES
            # #################################################################
            for i in range(0, len(approx_cnt)):
                # iterate over vertices (needs additional [0]
                vrt = []
                for j in range(0, 2):
                    vrt.append(int(approx_cnt[i][0][j]))
                verts.append(vrt)

            # #################################################################
            # NAMING THE OBJECT
            # #################################################################
            # if the shape is a triangle, it will have 3 vertices
            if len(approx_cnt) == 3:
                shape = "triangle"

            # if the shape has 4 vertices, it is either a square or
            # a rectangle
            elif len(approx_cnt) == 4:
                # compute the bounding box of the contour and use the
                # bounding box to compute the aspect ratio
                (x, y, w, h) = cv2.boundingRect(approx_cnt)
                ar = w / float(h)

                # a square will have an aspect ratio that is approximately
                # equal to one, otherwise, the shape is a rectangle
                shape = "square" if ar >= 0.95 and ar <= 1.05 else "rectangle"

            # if the shape is a pentagon, it will have 5 vertices
            elif len(approx_cnt) == 5:
                shape = "pentagon"

            # otherwise, we assume the shape is a circle
            else:
                shape = "circle"

            # #################################################################
            # COMPUTING CENTER
            # #################################################################
            M = cv2.moments(approx_cnt)
            try:
                approx_cnt_X = int((M['m10'] / M['m00']))
                approx_cnt_Y = int((M['m01'] / M['m00']))
            except ZeroDivisionError:
                approx_cnt_X = 0
                approx_cnt_Y = 0

            obj = {
                'shape': shape,
                'verts': verts,
                'approx_cnt': approx_cnt,
                'approx_cnt_area': approx_cnt_area,
                'contour': c,
                'center': (approx_cnt_X, approx_cnt_Y)
            }

            self.objs.append(obj)

            c = c.astype('float')
            c = c.astype('int')

            self.draw_cntrs_features(frameOriginal, self.settings,
                                     self.objs[index])

        if self.settings['dispTHEcenter']:
            cv2.circle(frameOriginal,
                       (self.resolution[0] / 2, self.resolution[1] / 2), 2,
                       (50, 50, 255), 1)

        if self.settings['dispGoal'] and bool(self.objs):
            cv2.line(frameOriginal,
                     (self.resolution[0] / 2, self.resolution[1] / 2),
                     self.objs[0]['center'], (255, 0, 0), 2)
Пример #28
0
# import necessary packages
from pivideostream import PiVideoStream
import cv2
import imutils
import numpy as np
import datetime
import time

# initialize variables
microsleep = False          # boolean to store subject state, default
counter = 0                 # variable to count instances of microsleep

# initialize the video stream specs, allow time for camera sensor to warmup
vs = PiVideoStream(resolution=(320, 240),framerate=32)
vs.start()
time.sleep(2.0)

# initialize start time after warmup
start_time = time.time()

while(True):
    frame = vs.read()                                               # start parsing through frames
    frame = imutils.resize(frame, width=400)                        # resize each individual frames

    onset = time.time()                                             # declare time of EC onset
    
    roi = frame[100:300, 100:250]                                   # crop to region of interest
    gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)                    # convert BGR frame to grayscale
    ret, thresh_img = cv2.threshold(gray,200,255,cv2.THRESH_BINARY) # create binary (BW) mask of grayscale image

    clahe = cv2.createCLAHE(clipLimit=5.0, tileGridSize=(4,4))      # perform adaptive histogram equalization
Пример #29
0
	help="whether or not the Raspberry Pi camera should be used")
args = vars(ap.parse_args())

kernel = numpy.ones((5,5), numpy.uint8)
#frameNum = 0 # TODO: find out how to determine unique frames
loops = 0
key = 0
centerX = 0
centerY = 0
angleToTarget = 0
display = 0
utils.hsvWrite(30,90,120,255,120,255) #Write Networktable values Green
#utils.hsvWrite(80,120,80,120,190,255) #Write Networktable values Blue
#utils.hsvWrite(130,120,80,200,190,255) #Write Networktable values Red
if (args["picamera"] > 0):
    cap = PiVideoStream().start()
else:
    cap = WebcamVideoStream().start()
time.sleep(2.0)
distanceTarget = -1
target = -1
centerX = 0
centerY = 0
r1x1 = -1
r1x2 = -1
r2x1 = -1
r2x2 = -1
while True:
    image = cap.read() #Capture frame
    #imageCopy = image
Пример #30
0
def read_settings():
    settings_file = open("settings.json", "r")
    settings_json = settings_file.read()
    return json.loads(settings_json)
def write_settings(settings):
    settings_json = json.dumps(settings)
    settings_file = open("settings.json", "w")
    settings_file.write(settings_json)

settings = read_settings()

# -----------------------------------------------------------------------------
# Camera
# -----------------------------------------------------------------------------

vs = PiVideoStream(resolution=(1280, 720), framerate=60).start()
def set_camera_settings():
    # Default settings
    vs.camera.brightness = 50
    vs.camera.contrast = 0
    vs.camera.awb_mode = "off"
    vs.camera.awb_gains = (1, 1)
    vs.drc_strength = "off"
    vs.exposure_mode = "off"
    # Customized settings
    vs.camera.shutter_speed = settings["shutter_speed"]

set_camera_settings()

def get_raw_readings():
    result = {}
Пример #31
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
      '--model', help='File path of Tflite model.', required=True)
    parser.add_argument(
      '--dims', help='Model input dimension', required=True)
    args = parser.parse_args()

    #Set all input params equal to the input dimensions expected by the model
    mdl_dims = int(args.dims) #dims must be a factor of 32 for picamera resolution to work

    #Set max num of objects you want to detect per frame
    max_obj = 10
    engine = edgetpu.detection.engine.DetectionEngine(args.model)
    pygame.init()
    pygame.display.set_caption('Face Detection')
    screen = pygame.display.set_mode((mdl_dims, mdl_dims), pygame.DOUBLEBUF|pygame.HWSURFACE)
    pygame.font.init()
    fnt_sz = 18
    myfont = pygame.font.SysFont('Arial', fnt_sz)

    camera = picamera.PiCamera()
    strm_thread = PiVideoStream().start()
    strm_thread.rgbCapture = bytearray(strm_thread.camera.resolution[0] * strm_thread.camera.resolution[1] * 3)
    #Set camera resolution equal to model dims
    camera.resolution = (mdl_dims, mdl_dims)
    #rgb = bytearray(camera.resolution[0] * camera.resolution[1] * 3)
    camera.framerate = 30
    _, width, height, channels = engine.get_input_tensor_shape()
    x1, x2, x3, x4, x5 = 0, 50, 50, 0, 0
    y1, y2, y3, y4, y5 = 50, 50, 0, 0, 50
    z = 5
    last_tm = time.time()
    i = 0

    exitFlag = True
    while(exitFlag):
        for event in pygame.event.get():
             keys = pygame.key.get_pressed()
             if(keys[pygame.K_ESCAPE] == 1):
                exitFlag = False
        with picamera.array.PiRGBArray(camera, size=(mdl_dims, mdl_dims)) as stream:        
            #stream = io.BytesIO()
            start_ms = time.time()
            camera.capture(stream, use_video_port=True, format='rgb')
            elapsed_ms = time.time() - start_ms
            stream.seek(0)
            stream.readinto(stream.rgbCapture)
            #stream.truncate() #needed??
            img = pygame.image.frombuffer(stream.rgbCapture[0:
            (camera.resolution[0] * camera.resolution[1] * 3)],
            camera.resolution, 'RGB')
            input = np.frombuffer(stream.getvalue(), dtype=np.uint8)
            #Inference
            results = engine.DetectWithInputTensor(input, top_k=max_obj)
            stream.close()                                                                 
            if img:
                 screen.blit(img, (0,0))
                 if results:
                      num_obj = 0
                      for obj in results:
                           num_obj = num_obj + 1
                      for obj in results:
                           bbox = obj.bounding_box.flatten().tolist()
                           score = round(obj.score,2)
                           x1 = round(bbox[0] * mdl_dims)
                           y1 = round(bbox[1] * mdl_dims)
                           x2 = round(bbox[2] * mdl_dims)
                           y2 = round(bbox[3] * mdl_dims)
                           rect_width = x2 - x1
                           rect_height = y2 - y1
                           class_score = "%.2f" % (score)
                           ms = "(%d) %s%.2fms" % (num_obj, "faces detected in ", elapsed_ms*1000)
                           fnt_class_score = myfont.render(class_score, True, (0,0,255))
                           fnt_class_score_width = fnt_class_score.get_rect().width
                           screen.blit(fnt_class_score,(x1, y1-fnt_sz))
                           fnt_ms = myfont.render(ms, True, (255,255,255))
                           fnt_ms_width = fnt_ms.get_rect().width
                           screen.blit(fnt_ms,((mdl_dims / 2) - (fnt_ms_width / 2), 0))
                           bbox_rect = pygame.draw.rect(screen, (0,0,255), (x1, y1, rect_width, rect_height), 2)
                           #pygame.display.update(bbox_rect)
                 else:
                      elapsed_ms = time.time() - start_ms
                      ms = "%s %.2fms" % ("No faces detected in", elapsed_ms*1000)
                      fnt_ms = myfont.render(ms, True, (255,0,0))
                      fnt_ms_width = fnt_ms.get_rect().width
                      screen.blit(fnt_ms,((mdl_dims / 2) - (fnt_ms_width / 2), 0))

        pygame.display.update()

    pygame.display.quit()
Пример #32
0
def main():
    # create queues in shared memory so each process can access it
    mainQueue = Queue(maxsize=70)
    xyDoneQueue = Queue(maxsize=70)
    hudDoneQueue = Queue(maxsize=70)
    resizeDoneQueue = Queue(maxsize=70)

    # start VideoStream process
    vs = PiVideoStream(mainQueue, file1)
    time.sleep(1)  # allow pi camera to "warm up"
    vsP1 = Process(target=vs.update,
                   name='videoStreamProcess',
                   args=(resolution, framerate,
                         awb_mode))  # passing these parameters here because
    time.sleep(
        0.5
    )  # put some frames into mainQueue to stop other processes from throwing errors
    # passing to PiVideoStream instantiation causes pi camera to be accessed by two different processes which breaks it
    vsP1.daemon = True
    vsP1.start()

    # start ColorTracker process
    tracker = ColorTracker(mainQueue, xyDoneQueue, file2)  # pass shared queues
    trackerP1 = Process(target=tracker.update, name='trackerProcess', args=())
    trackerP1.daemon = True
    trackerP1.start()

    # start Hud process
    hud = Hud(resolution, xyDoneQueue, hudDoneQueue, file3, hud_done)
    hudP1 = Process(target=hud.draw, name='hudProcess', args=())
    hudP1.daemon = True
    hudP1.start()

    # start ResizeFrame process 1
    resize = ResizeFrame(hudDoneQueue,
                         resizeDoneQueue,
                         file4,
                         hud_done,
                         instance_name='resizer1')
    resizeP1 = Process(target=resize.resize, name='resizeProcess', args=())
    resizeP1.daemon = True
    resizeP1.start()

    # start ResizeFrame process 2
    resize2 = ResizeFrame(hudDoneQueue,
                          resizeDoneQueue,
                          file4B,
                          hud_done,
                          instance_name='resizer2')
    resizeP2 = Process(target=resize2.resize, name='resizeProcess2', args=())
    resizeP2.daemon = True
    resizeP2.start()

    # start DisplayFrame process
    display = DisplayFrame(resizeDoneQueue, file5, done)
    displayP1 = Process(target=display.show, name='displayProcess', args=())
    displayP1.daemon = True
    displayP1.start()

    while not done.is_set():
        continue

    else:
        print('Terminating processes')
        file1.close()
        file2.close()
        file3.close()
        file4.close()
        file4B.close()
        vsP1.terminate()
        trackerP1.terminate()
        hudP1.terminate()
        resizeP1.terminate()
        resizeP2.terminate()
        displayP1.terminate()
Пример #33
0

# DEBUG values
SET_GUI = False  # Do or do not show GUI
DEBUG_MOTORSPEED = False  # Do or do not write motor speed commands on console
DEBUG_TIMING = False  # Do or do not write how much time each processing step takes on console
DEBUG_CIRCLEPOS = True  # Do or do not write detected circle position on console

# Initialize the motor object
motor = mw.MyMotor("/dev/ttyACM0", 115200)
motor.pwm = 50

# initialize the camera
width = 320
height = 240
camera = PiVideoStream((width, height), 30).start()
counter = FPS()
counter.start()
# allow the camera to warmup capture frames from the camera
time.sleep(0.5)

# detection variables
posX = None  # X position
posX_prev = 0  # X position in the previous iteration
posY = None  # Y position
posX_exp_filter_coeff = 0.8  # The amount of how much the current measurement changes the position. [0,1]. current = alpha * measurement + (1-alpha) * previous
radius = None  # Circle radius
radius_prev = 0  # Previous circle radius
rad_exp_filter_coeff = 0.8  # The amount of how much the current measurement changes the radius. [0,1]. current = alpha * measurement + (1-alpha) * previous
speed = 0  # Speed to send to the motor controller
angleCorr = 0  # The difference between the two tracks so the robot turns
Пример #34
0
import requests
import json
import cv2
from pivideostream import PiVideoStream
import numpy as np
import base64

addr = 'http://192.168.0.6:5000'
test_url = addr + '/api/test'

content_type = 'image/jpeg'
headers = {'content-type': content_type}

video_capture = PiVideoStream().start()

while True:
    try:
        frame = video_capture.read()
        #print(frame)
        _, img_encoded = cv2.imencode('.jpg', frame)
        response = requests.post(test_url,
                                 data=img_encoded.tostring(),
                                 headers=headers)
        str_response = json.loads(response.text)
        arr = np.fromstring(base64.b64decode(
            str_response['message']['py/b64']),
                            dtype=np.uint8)
        img = cv2.imdecode(arr, -1)
        print(img)
        cv2.imshow('frame', img)
        if cv2.waitKey(1) & 0xFF == ord('q'):