Пример #1
0
 def __init__(self):
     initializer = initializers.HeNormal()
     super(Generator, self).__init__(
         # num of noise that becomes the seed of Generation is 100
         l0z=L.Linear(100, 7 * 7 * 128, initialW=initializer),
         ps1=PixelShuffler(2, 128, 256),
         ps2=PixelShuffler(2, 64, 4),
         bn0=L.BatchNormalization(7 * 7 * 128),
         bn1=L.BatchNormalization(64),
     )
Пример #2
0
def wdsr(scale, filters, n_resblocks, res_block):
    x_in = Input(shape=(None, None, 3))

    m = Conv2D(filters, 3, padding='same')(x_in)
    for i in range(n_resblocks):
        m = res_block(m, filters)
    m = Conv2D(3 * scale**2, 3, padding='same')(m)
    m = PixelShuffler(scale)(m)

    s = Conv2D(3 * scale**2, 5, padding='same')(x_in)
    s = PixelShuffler(scale)(s)
    x = Add()([m, s])
    return Model(x_in, x)
Пример #3
0
def encoder():
    inputs = Input(shape=IMAGE_SHAPE)
    x = inputs
    ##x = K.constant(inp)
    #x = Conv2D( 64, kernel_size=5, strides=2, padding='same' )(x)
    #x = LeakyReLU(0.1)(x)
    x = Conv2D(128, kernel_size=5, strides=2, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = Conv2D(256, kernel_size=5, strides=2, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = Conv2D(512, kernel_size=5, strides=2, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = Conv2D(1024, kernel_size=5, strides=2, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = Dense(1024)(Flatten()(x))
    x = Dense(8 * 8 * 1024)(x)
    x = Reshape((8, 8, 1024))(x)
    x = PixelShuffler()(x)
    x = Conv2D(256 * 4, kernel_size=3, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    #x = Conv2D( 256*2, kernel_size=3, padding='same' )(x)
    #x = LeakyReLU(0.1)(x)

    #return x

    #arr=K.eval(x)
    #return arr
    return Model(inputs, x)
Пример #4
0
 def block(x):
     x = Conv2D(filters * 4,
                kernel_size=5,
                use_bias=False,
                kernel_initializer=RandomNormal(0, 0.02),
                padding='same')(x)
     x = LeakyReLU(0.1)(x)
     x = PixelShuffler()(x)
     return x
Пример #5
0
 def block(x):
     x = Conv2D(out_shape[2] * 4, 3, padding='same')(x)
     x = LeakyReLU(0.1)(x)
     x = PixelShuffler()(x)
     shape = x.get_shape().as_list()[1:]
     cx = shape[0] - out_shape[0]
     cy = shape[1] - out_shape[1]
     if cx != 0 or cy != 0:
         x = Cropping2D(((0, cx), (0, cy)))(x)
     return x
Пример #6
0
 def block(x, use_instance_norm=use_instance_norm):
     x = Conv2D(filters * 4,
                kernel_size=3,
                use_bias=False,
                kernel_initializer=RandomNormal(0, 0.02),
                padding='same')(x)
     if use_instance_norm:
         x = inst_norm()(x)
     x = LeakyReLU(0.1)(x)
     x = PixelShuffler()(x)
     return x
Пример #7
0
def decoder():
    #x = K.constant(inp)
    inputs = Input(shape=(8, 8, 512))
    x = inputs
    x = Conv2D(1024, kernel_size=3, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = PixelShuffler()(x)
    x = Conv2D(128 * 4, kernel_size=3, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = PixelShuffler()(x)
    x = Conv2D(64 * 4, kernel_size=3, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = PixelShuffler()(x)
    x = Conv2D(32 * 4, kernel_size=3, padding='same')(x)
    x = LeakyReLU(0.1)(x)
    x = PixelShuffler()(x)
    #x = Conv2D( 16*4, kernel_size=3, padding='same' )(x)
    #x = LeakyReLU(0.1)(x)
    #x = PixelShuffler()(x)
    x = Conv2D(3, kernel_size=5, padding='same', activation="sigmoid")(x)
    return Model(inputs, x)
def residual_decoder(h, w, c=3, k=4, latent_dim=2, dropout_rate=0.1):

    inputs_ = Input(shape=(latent_dim, ))

    hidden = inputs_

    transform = Dense(h * w * 512, kernel_regularizer=l2(0.001))(hidden)
    transform = LeakyReLU(0.1)(transform)  # more nonlinearity
    reshape = Reshape((h, w, 512))(transform)

    x = reshape  # 2x2@512
    x = Dropout(dropout_rate)(x)  # prevent overfitting

    x = up_bilinear()(x)  # 4x4@512
    x = Conv2DTranspose(128, k, padding='same')(x)  # 4x4@128
    x = LeakyReLU(0.2)(x)

    x = up_bilinear()(x)  # 8x8@128
    x = Conv2DTranspose(128, k, padding='same')(x)  # 8x8@128
    x = LeakyReLU(0.2)(x)

    x = up_bilinear()(x)  # 16x16@128
    x = Conv2DTranspose(64, k, padding='same')(x)  # 16x16@64
    x = LeakyReLU(0.2)(x)

    x = _res_conv(64, k, dropout_rate)(x)  # 16x16@64

    x = PixelShuffler()(x)  # 32x32@16
    x = Conv2DTranspose(32, k, padding='same')(x)  # 32x32@32
    x = LeakyReLU(0.2)(x)

    x = _res_conv(32, k, dropout_rate)(x)  # 32x32@32

    outputs = conv(c, k, 1, act='tanh')(x)  # 32x32@c

    model = Model([inputs_], [outputs])
    return model
Пример #9
0
 def block(x):
     x = Conv2D(filters * 4, kernel_size=3, padding='same')(x)
     x = LeakyReLU(0.1)(x)
     x = PixelShuffler()(x)
     return x