Пример #1
0
def write(fname, data, splits=None, type="auto", maxmaps=1000, **kwargs):
    import numpy as np
    from pixell import enmap, utils
    if type == "auto": type = infer_type(fname)
    if type == "zip":
        work, flexopen = zipfile.ZipFile(fname, "w"), zip_flexopen
    elif type == "dir":
        utils.mkdir(fname)
        work, flexopen = fname, dir_flexopen
    else:
        raise ValueError("Unrecognized type '%s'" % str(type))
    with flexopen(work, "info.txt", "w") as f:
        write_info(f, data)
    with flexopen(work, "beam.txt", "w") as f:
        np.savetxt(f,
                   np.array([np.arange(len(data.beam)), data.beam]).T,
                   fmt="%5.0f %15.7e")
    for i, m in enumerate(data.maps):
        with flexopen(work, "map%d.fits" % (i + 1), "w") as f:
            enmap.write_fits(f, m)
    for i, m in enumerate(data.ivars):
        with flexopen(work, "ivar%d.fits" % (i + 1), "w") as f:
            enmap.write_fits(f, m)
Пример #2
0
version = 'v6.0.0_uncalibrated_mask_version_padded_v1'
#version = 'v4.0_mask_version_mr3c_20190215_pickupsub_190303' # for s16
# our test data set
#season, array, patch, freq = ('s16', 'pa2', 'cmb', 'f150')
#season, array, patch, freq = ('s13', 'pa1', 'deep1', 'f150')
season, array, patch, freq = ('s15', 'pa3', 'deep56', 'f150')
# We initialize the sim generator with the mask version
simgen = simgen.SimGen(version=version)
# We can then get just signal = cmb + fg (and loop over season,patch,array,sim_num after the above initialization)
# with bench.show("signal"):
#     simgen.get_signal(season, patch, array, freq, sim_num=0,mask_patch="patch006")
# Or get just cmb
#imap = simgen.get_cmb(season, patch, array, freq, sim_num= 0,mask_patch="patch006")
# Or get just foregrounds
#simgen.get_fg(season, patch, array, freq, sim_num=0)#,mask_patch="patch006")
# Or get just noise. NOTE: You can't get this per frequency, but you get a stack of maps for the entire dichroic array
with bench.show("noise"):
    omap = simgen.get_noise(season, patch, array, sim_num=0)  #, freq, 0)

print(omap.shape)

enmap.write_fits("simpa3.fits", omap[:, 0, 0, ...])

# Or signal + noise. Same note as above for stack of dichroic
# @Steve: hopefully this is the only function you will need
#imap = simgen.get_sim(season, patch, array,sim_num=0,mask_patch="patch006")

# simgen = simgen.SimGen(version=version)
# imap = simgen.get_signal(season, patch, array, freq, sim_num=0)
# print(imap.shape)
Пример #3
0
def project_mask(mask, shape, wcs, fname=None):
    sim_mask = enmap.project(mask, shape, wcs, order=1)
    if fname != None:
        enmap.write_fits(fname, sim_mask, extra={})
Пример #4
0
                                              np.deg2rad(pfwhm / 60.)),
                                          div=divstamp,
                                          ps=ps,
                                          beam=pfwhm,
                                          n2d=None)
        # model = pointsrcs.sim_srcs(stamp.shape, stamp.wcs,
        #                            np.array((dec,ra,famp.reshape(-1)[0]))[None],
        #                            maps.sigma_from_fwhm(np.deg2rad(pfwhm/60.)))
        # io.plot_img(np.log10(stamp),"stamp_%d.png" % k)
        # io.plot_img(divstamp,"divstamp_%d.png"  % k)
        # io.plot_img(model,"model_%d.png"  % k)
        # io.plot_img(stamp-model,"residual_%d.png"  % k)

        # if k==1: sys.exit()
        sdecs.append(dec)
        sras.append(ra)
        amps.append(famp.reshape(-1)[0])
        print(famp, sns[k])
        print("Done with source ", k + 1, " / ", len(ras))

    srcs = np.stack((sdecs, sras, amps)).T
    shape, wcs = imap.shape, imap.wcs
    model = pointsrcs.sim_srcs(shape[-2:], wcs, srcs,
                               maps.sigma_from_fwhm(np.deg2rad(pfwhm / 60.)))
    omap = imap - model
    mname = fname.replace('.fits', '_pccs_sub_model.fits')
    cname = fname.replace('.fits', '_pccs_sub_catalog.txt')
    io.save_cols(cname, (sras, sdecs, amps))
    enmap.write_fits(mname, model[None])
    enmap.write_fits(oname, omap[None])
Пример #5
0
                if numerical_parameters['verbose']:
                    print('I am in index = ' + str(ii))

                # generate a single tSZ map
                # Note: the runtime of this function is dominated by the
                #       mfunc.throw_clusters function, which is just array
                #       manipulation.
                #       The usage of numba.jit is very helpful in keeping
                #       runtime reasonable.
                stub = '_{:d}_{:d}'.format(ii, jj)
                if numerical_parameters['do_maps']:
                    sz_map = mfunc.map_generate_final_map(numerical_parameters, \
                                                          cosmology_parameters, \
                                                          dndOmega, thetas, \
                                                          yprofiles, wcss[jj])
                    enmap.write_fits(path + 'tsz_map' + stub + '.fits', sz_map)
                else:
                    sz_map = enmap.read_map(path + 'tsz_map' + stub + '.fits')

                # generates a noise map of the same shape as the final map
                if numerical_parameters['do_maps']:
                    noise_map = \
                        mfunc.map_generate_random_noise(numerical_parameters, \
                                                        cosmology_parameters, \
                                                        wcss[jj])
                    enmap.write_fits(path + 'noise_map' + stub + '.fits',
                                     noise_map)
                else:
                    noise_map = enmap.read_map(path + 'noise_map' + stub +
                                               '.fits')