Пример #1
0
    def GetSuggestions(self, request, context):
        """
        Main function to provide suggestion.
        """
        experiment = self._get_experiment(request.experiment_name)
        parameter_config = parsing_util.parse_parameter_configs(
            experiment.spec.parameter_specs.parameters)
        trial_specs = []
        for _ in range(request.request_number):
            sample = parameter_config.random_sample()
            suggestion = parsing_util.parse_x_next_vector(
                sample, parameter_config.parameter_types,
                parameter_config.names, parameter_config.discrete_info,
                parameter_config.categorical_info)
            trial_spec = api_pb2.TrialSpec()
            trial_spec.experiment_name = request.experiment_name
            for param in suggestion:
                trial_spec.parameter_assignments.assignments.add(
                    name=param['name'], value=str(param['value']))
            trial_specs.append(trial_spec)

        reply = api_pb2.GetSuggestionsReply()
        for trial_spec in trial_specs:
            reply.trials.add(spec=trial_spec)

        return reply
Пример #2
0
 def _copy_trials(self, trials, r_i, resourceName):
     trialSpecs = []
     for t in trials:
         trial_spec = api_pb2.TrialSpec()
         for assignment in t.spec.parameter_assignments.assignments:
             if assignment.name == resourceName:
                 value = str(r_i)
             else:
                 value = assignment.value
             trial_spec.parameter_assignments.assignments.add(
                 name=assignment.name, value=value)
         trialSpecs.append(trial_spec)
     return trialSpecs
Пример #3
0
    def GetSuggestions(self, request, context):
        """
        Main function to provide suggestion.
        """
        experiment_name = request.experiment_name
        request_number = request.request_number
        experiment = self._get_experiment(experiment_name)
        parameters = experiment.spec.parameter_specs.parameters
        alg_settings = self._get_algorithm_settings(experiment_name)
        combinations, parameter_config = self._create_all_combinations(
            parameters, alg_settings)
        total_combinations = len(combinations)

        allocated_trials = self._get_trials(experiment_name)
        total_allocated_trials = len(allocated_trials)
        return_start_index = total_allocated_trials
        return_end_index = return_start_index + request_number

        if return_start_index > total_combinations:
            return_start_index = 0
            return_end_index = return_start_index + request_number
        elif return_start_index + request_number > total_combinations:
            return_start_index = total_combinations - request_number
            return_end_index = total_combinations
        if return_start_index < 0:
            return_start_index = 0

        trial_specs = []
        for elem in combinations[return_start_index:return_end_index]:
            suggestion = parsing_util.parse_x_next_tuple(
                elem, parameter_config.parameter_types, parameter_config.names)
            trial_spec = api_pb2.TrialSpec()
            trial_spec.experiment_name = experiment_name
            for param in suggestion:
                trial_spec.parameter_assignments.assignments.add(
                    name=param['name'], value=str(param['value']))
            trial_specs.append(trial_spec)
        reply = api_pb2.GetSuggestionsReply()
        for trial_spec in trial_specs:
            reply.trials.add(spec=trial_spec)
        return reply
Пример #4
0
 def _make_master_bracket(self, experiment, sParams):
     n = sParams["n"]
     r = int(sParams["r"])
     parameter_config = parsing_util.parse_parameter_configs(
         experiment.spec.parameter_specs.parameters)
     trial_specs = []
     for _ in range(n):
         sample = parameter_config.random_sample()
         suggestion = parsing_util.parse_x_next_vector(
             sample, parameter_config.parameter_types,
             parameter_config.names, parameter_config.discrete_info,
             parameter_config.categorical_info)
         trial_spec = api_pb2.TrialSpec()
         trial_spec.experiment_name = experiment.name
         for param in suggestion:
             if param['name'] == sParams["resourceName"]:
                 param['value'] = str(r)
             trial_spec.parameter_assignments.assignments.add(
                 name=param['name'], value=str(param['value']))
         trial_specs.append(trial_spec)
     self.logger.info("Generate %d trials by master bracket.",
                      n,
                      extra={"experiment_name": experiment.name})
     return trial_specs
Пример #5
0
    def GetSuggestions(self, request, context):

        if request.experiment_name not in self.registered_experiments:
            self.registered_experiments[request.experiment_name] = NAS_RL_Experiment(request, self.logger)
        
        experiment = self.registered_experiments[request.experiment_name]

        self.logger.info("-" * 100 + "\nSuggestion Step {} for Experiment {}\n".format(experiment.ctrl_step, experiment.experiment_name) + "-" * 100)

        with experiment.tf_graph.as_default():
            saver = tf.train.Saver()
            ctrl = experiment.controller

            controller_ops = {
                  "train_step": ctrl.train_step,
                  "loss": ctrl.loss,
                  "train_op": ctrl.train_op,
                  "lr": ctrl.lr,
                  "grad_norm": ctrl.grad_norm,
                  "optimizer": ctrl.optimizer,
                  "baseline": ctrl.baseline,
                  "entropy": ctrl.sample_entropy,
                  "sample_arc": ctrl.sample_arc,
                  "skip_rate": ctrl.skip_rate}

            run_ops = [
                controller_ops["loss"],
                controller_ops["entropy"],
                controller_ops["lr"],
                controller_ops["grad_norm"],
                controller_ops["baseline"],
                controller_ops["skip_rate"],
                controller_ops["train_op"]]

            if experiment.is_first_run:
                self.logger.info(">>> First time running suggestion for {}. Random architecture will be given.".format(experiment.experiment_name))
                with tf.Session() as sess:
                    sess.run(tf.global_variables_initializer())
                    candidates = list()
                    for _ in range(experiment.num_trials):
                        candidates.append(sess.run(controller_ops["sample_arc"]))
                    
                    # TODO: will use PVC to store the checkpoint to protect against unexpected suggestion pod restart
                    saver.save(sess, experiment.ctrl_cache_file)

                experiment.is_first_run = False

            else:
                with tf.Session() as sess:
                    saver.restore(sess, experiment.ctrl_cache_file)

                    valid_acc = ctrl.reward
                    result = self.GetEvaluationResult(experiment)

                    # TODO: (andreyvelich) I deleted this part, should it be handle by controller?
                    # Sometimes training container may fail and GetEvaluationResult() will return None
                    # In this case, the Suggestion will:
                    # 1. Firstly try to respawn the previous trials after waiting for RESPAWN_SLEEP seconds
                    # 2. If respawning the trials for RESPAWN_LIMIT times still cannot collect valid results,
                    #    then fail the task because it may indicate that the training container has errors.
                    if result is None:
                        self.logger.warning(">>> Suggestion has spawned trials, but they all failed.")
                        self.logger.warning(">>> Please check whether the training container is correctly implemented")
                        self.logger.info(">>> Experiment {} failed".format(experiment.experiment_name))
                        return []

                    # This LSTM network is designed to maximize the metrics
                    # However, if the user wants to minimize the metrics, we can take the negative of the result

                    if experiment.opt_direction == api_pb2.MINIMIZE:
                        result = -result

                    loss, entropy, lr, gn, bl, skip, _ = sess.run(
                        fetches=run_ops,
                        feed_dict={valid_acc: result})
                    
                    self.logger.info(">>> Suggestion updated. LSTM Controller Reward: {}".format(loss))

                    candidates = list()
                    for _ in range(experiment.num_trials):
                        candidates.append(sess.run(controller_ops["sample_arc"]))

                    saver.save(sess, experiment.ctrl_cache_file)
        
        organized_candidates = list()
        trials = list()

        for i in range(experiment.num_trials):
            arc = candidates[i].tolist()
            organized_arc = [0 for _ in range(experiment.num_layers)]
            record = 0
            for l in range(experiment.num_layers):
                organized_arc[l] = arc[record: record + l + 1]
                record += l + 1
            organized_candidates.append(organized_arc)

            nn_config = dict()
            nn_config['num_layers'] = experiment.num_layers
            nn_config['input_sizes'] = experiment.input_sizes
            nn_config['output_sizes'] = experiment.output_sizes
            nn_config['embedding'] = dict()
            for l in range(experiment.num_layers):
                opt = organized_arc[l][0]
                nn_config['embedding'][opt] = experiment.search_space[opt].get_dict()

            organized_arc_json = json.dumps(organized_arc)
            nn_config_json = json.dumps(nn_config)

            organized_arc_str = str(organized_arc_json).replace('\"', '\'')
            nn_config_str = str(nn_config_json).replace('\"', '\'')

            self.logger.info("\n>>> New Neural Network Architecture Candidate #{} (internal representation):".format(i))
            self.logger.info(organized_arc_json)
            self.logger.info("\n>>> Corresponding Seach Space Description:")
            self.logger.info(nn_config_str)

            trials.append(api_pb2.Trial(
                spec=api_pb2.TrialSpec(
                    experiment_name=request.experiment_name,
                    parameter_assignments=api_pb2.TrialSpec.ParameterAssignments(
                        assignments=[
                            api_pb2.ParameterAssignment(
                                name="architecture",
                                value=organized_arc_str
                            ),
                            api_pb2.ParameterAssignment(
                                name="nn_config",
                                value=nn_config_str
                            )
                        ]
                    )
                )
            ))
        
        self.logger.info("")
        self.logger.info(">>> {} Trials were created for Experiment {}".format(experiment.num_trials, experiment.experiment_name))
        self.logger.info("")

        experiment.ctrl_step += 1

        return api_pb2.GetSuggestionsReply(trials=trials)        
Пример #6
0
    def GetSuggestions(self, request, context):
        """
        Main function to provide suggestion.
        """
        service_params = self.parseParameters(request.experiment_name)
        experiment = self._get_experiment(request.experiment_name)
        X_train, y_train = self.getEvalHistory(
            request.experiment_name,
            experiment.spec.objective.objective_metric_name,
            service_params["burn_in"])

        parameter_config = parsing_util.parse_parameter_configs(
            experiment.spec.parameter_specs.parameters)
        algo_manager = AlgorithmManager(
            experiment_name=request.experiment_name,
            experiment=experiment,
            parameter_config=parameter_config,
            X_train=X_train,
            y_train=y_train,
            logger=self.logger,
        )

        lowerbound = np.array(algo_manager.lower_bound)
        upperbound = np.array(algo_manager.upper_bound)
        self.logger.debug("lowerbound: %r",
                          lowerbound,
                          extra={"experiment_name": request.experiment_name})
        self.logger.debug("upperbound: %r",
                          upperbound,
                          extra={"experiment_name": request.experiment_name})
        alg = BOAlgorithm(
            experiment_name=request.experiment_name,
            dim=algo_manager.dim,
            N=int(service_params["N"]),
            lowerbound=lowerbound,
            upperbound=upperbound,
            X_train=algo_manager.X_train,
            y_train=algo_manager.y_train,
            mode=service_params["mode"],
            trade_off=service_params["trade_off"],
            # todo: support length_scale with array type
            length_scale=service_params["length_scale"],
            noise=service_params["noise"],
            nu=service_params["nu"],
            kernel_type=service_params["kernel_type"],
            n_estimators=service_params["n_estimators"],
            max_features=service_params["max_features"],
            model_type=service_params["model_type"],
            logger=self.logger,
        )
        self.logger.debug("alg: %r",
                          alg,
                          extra={"experiment_name": request.experiment_name})
        trials = []
        x_next_list = alg.get_suggestion(request.request_number)
        self.logger.debug("x_next_list: %r",
                          x_next_list,
                          extra={"experiment_name": request.experiment_name})
        for x_next in x_next_list:
            x_next = x_next.squeeze()
            self.logger.debug(
                "xnext: %r ",
                x_next,
                extra={"experiment_name": request.experiment_name})
            x_next = algo_manager.parse_x_next(x_next)
            x_next = algo_manager.convert_to_dict(x_next)
            trials.append(
                api_pb2.Trial(spec=api_pb2.TrialSpec(
                    experiment_name=request.experiment_name,
                    parameter_assignments=api_pb2.TrialSpec.
                    ParameterAssignments(assignments=[
                        api_pb2.ParameterAssignment(
                            name=x["name"],
                            value=str(x["value"]),
                        ) for x in x_next
                    ]))))
        return api_pb2.GetSuggestionsReply(trials=trials)