Пример #1
0
    def test_get_suggestion(self):
        experiment = api_pb2.Experiment(
            name="darts-experiment",
            spec=api_pb2.ExperimentSpec(
                algorithm=api_pb2.AlgorithmSpec(
                    algorithm_name="darts",
                    algorithm_settings=[
                        api_pb2.AlgorithmSetting(name="num_epoch", value="10")
                    ],
                ),
                objective=api_pb2.ObjectiveSpec(
                    type=api_pb2.MAXIMIZE,
                    objective_metric_name="Best-Genotype"),
                parallel_trial_count=1,
                max_trial_count=1,
                nas_config=api_pb2.NasConfig(
                    graph_config=api_pb2.GraphConfig(num_layers=3, ),
                    operations=api_pb2.NasConfig.Operations(operation=[
                        api_pb2.Operation(
                            operation_type="separable_convolution",
                            parameter_specs=api_pb2.Operation.
                            ParameterSpecs(parameters=[
                                api_pb2.ParameterSpec(
                                    name="filter_size",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None, min=None, list=["3", "5"])),
                            ])),
                    ], ))))

        request = api_pb2.GetSuggestionsRequest(
            experiment=experiment,
            request_number=1,
        )

        get_suggestion = self.test_server.invoke_unary_unary(
            method_descriptor=(
                api_pb2.DESCRIPTOR.services_by_name['Suggestion'].
                methods_by_name['GetSuggestions']),
            invocation_metadata={},
            request=request,
            timeout=100)

        response, metadata, code, details = get_suggestion.termination()
        print(response.parameter_assignments)

        self.assertEqual(code, grpc.StatusCode.OK)
        self.assertEqual(1, len(response.parameter_assignments))

        exp_algorithm_settings = {}
        for setting in experiment.spec.algorithm.algorithm_settings:
            exp_algorithm_settings[setting.name] = setting.value

        exp_num_layers = experiment.spec.nas_config.graph_config.num_layers

        exp_search_space = [
            "separable_convolution_3x3", "separable_convolution_5x5"
        ]
        for pa in response.parameter_assignments[0].assignments:
            if (pa.name == "algorithm-settings"):
                algorithm_settings = pa.value.replace("\'", "\"")
                algorithm_settings = json.loads(algorithm_settings)
                self.assertDictContainsSubset(exp_algorithm_settings,
                                              algorithm_settings)
            elif (pa.name == "num-layers"):
                self.assertEqual(exp_num_layers, int(pa.value))
            elif (pa.name == "search-space"):
                search_space = pa.value.replace("\'", "\"")
                search_space = json.loads(search_space)
                self.assertEqual(exp_search_space, search_space)
Пример #2
0
    def test_get_suggestion(self):
        trials = [
            api_pb2.Trial(
                name="first-trial",
                spec=api_pb2.TrialSpec(
                    objective=api_pb2.ObjectiveSpec(
                        type=api_pb2.MAXIMIZE,
                        objective_metric_name="Validation-Accuracy",
                        goal=0.99),
                    parameter_assignments=api_pb2.TrialSpec.
                    ParameterAssignments(assignments=[
                        api_pb2.ParameterAssignment(
                            name="architecture",
                            value="[[3], [0, 1], [0, 0, 1], [2, 1, 0, 0]]",
                        ),
                        api_pb2.ParameterAssignment(
                            name="nn_config",
                            value="{'num_layers': 4}",
                        ),
                    ])),
                status=api_pb2.TrialStatus(
                    observation=api_pb2.Observation(metrics=[
                        api_pb2.Metric(name="Validation-Accuracy",
                                       value="0.88"),
                    ]),
                    condition=api_pb2.TrialStatus.TrialConditionType.SUCCEEDED,
                )),
            api_pb2.Trial(
                name="second-trial",
                spec=api_pb2.TrialSpec(
                    objective=api_pb2.ObjectiveSpec(
                        type=api_pb2.MAXIMIZE,
                        objective_metric_name="Validation-Accuracy",
                        goal=0.99),
                    parameter_assignments=api_pb2.TrialSpec.
                    ParameterAssignments(assignments=[
                        api_pb2.ParameterAssignment(
                            name="architecture",
                            value="[[1], [0, 1], [2, 1, 1], [2, 1, 1, 0]]",
                        ),
                        api_pb2.ParameterAssignment(
                            name="nn_config",
                            value="{'num_layers': 4}",
                        ),
                    ], )),
                status=api_pb2.TrialStatus(
                    observation=api_pb2.Observation(metrics=[
                        api_pb2.Metric(name="Validation-Accuracy",
                                       value="0.84"),
                    ]),
                    condition=api_pb2.TrialStatus.TrialConditionType.SUCCEEDED,
                ))
        ]
        experiment = api_pb2.Experiment(
            name="enas-experiment",
            spec=api_pb2.ExperimentSpec(
                algorithm=api_pb2.AlgorithmSpec(algorithm_name="enas", ),
                objective=api_pb2.ObjectiveSpec(
                    type=api_pb2.MAXIMIZE,
                    goal=0.9,
                    objective_metric_name="Validation-Accuracy"),
                parallel_trial_count=2,
                max_trial_count=10,
                nas_config=api_pb2.NasConfig(
                    graph_config=api_pb2.GraphConfig(num_layers=4,
                                                     input_sizes=[32, 32, 8],
                                                     output_sizes=[10]),
                    operations=api_pb2.NasConfig.Operations(operation=[
                        api_pb2.Operation(
                            operation_type="convolution",
                            parameter_specs=api_pb2.Operation.
                            ParameterSpecs(parameters=[
                                api_pb2.ParameterSpec(
                                    name="filter_size",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None, min=None, list=["5"])),
                                api_pb2.ParameterSpec(
                                    name="num_filter",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None, min=None, list=["128"])),
                                api_pb2.ParameterSpec(
                                    name="stride",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None, min=None, list=["1", "2"])),
                            ])),
                        api_pb2.Operation(
                            operation_type="reduction",
                            parameter_specs=api_pb2.Operation.
                            ParameterSpecs(parameters=[
                                api_pb2.ParameterSpec(
                                    name="reduction_type",
                                    parameter_type=api_pb2.CATEGORICAL,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        max=None,
                                        min=None,
                                        list=["max_pooling"])),
                                api_pb2.ParameterSpec(
                                    name="pool_size",
                                    parameter_type=api_pb2.INT,
                                    feasible_space=api_pb2.FeasibleSpace(
                                        min="2", max="3", step="1", list=[])),
                            ])),
                    ], ))))

        request = api_pb2.GetSuggestionsRequest(
            experiment=experiment,
            trials=trials,
            request_number=2,
        )

        get_suggestion = self.test_server.invoke_unary_unary(
            method_descriptor=(
                api_pb2.DESCRIPTOR.services_by_name['Suggestion'].
                methods_by_name['GetSuggestions']),
            invocation_metadata={},
            request=request,
            timeout=100)

        response, metadata, code, details = get_suggestion.termination()
        print(response.parameter_assignments)
        self.assertEqual(code, grpc.StatusCode.OK)
        self.assertEqual(2, len(response.parameter_assignments))