Пример #1
0
def perform_version_check(
        configfile=(_os.path.join(_os.path.expanduser("~"), ".graphlab",
                                  "config")),
        _version_url=__GLCREATE_CURRENT_VERSION_URL__,
        _feature_url=__GLCREATE_CURRENT_VERSION_FEATURES_URL__,
        _outputstream=_sys.stderr):
    """
    Checks if currently running version of GraphLab Create is less than the
    version available from graphlab.com. Prints a message if the graphlab.com
    servers are reachable, and the current version is out of date. Does
    nothing otherwise.

    If the configfile contains a key "skip_version_check" in the Product
    section with non-zero value, this function does nothing.

    Also returns True if a message is printed, and returns False otherwise.
    """
    skip_version_check = False
    try:
        if (_os.path.isfile(configfile)):
            config = _ConfigParser.ConfigParser()
            config.read(configfile)
            section = 'Product'
            key = 'skip_version_check'
            skip_version_check = config.getboolean(section, key)
            __LOGGER__.debug("skip_version_check=%s" % str(skip_version_check))
    except:
        # eat all errors
        pass

    # skip version check set. Quit
    if not skip_version_check:
        try:
            latest_version = get_newest_version(timeout=1,
                                                _url=_version_url).strip()
            if _parse_version(latest_version) > _parse_version(
                    _version_info.version):
                try:
                    _feature_url += '/' + get_major_version(
                        _version_info.version)
                    latest_features = get_newest_features(
                        timeout=1, _url=_feature_url).strip()
                except:
                    latest_features = ''
                msg = ("A newer version of GraphLab Create (v%s) is available! "
                       "Your current version is v%s.\n"
                       "%s"  # this is the string of new features list
                       "You can use pip to upgrade the graphlab-create package. "
                       "For more information see https://dato.com/products/create/upgrade.") % \
                      (latest_version, _version_info.version, latest_features)
                _outputstream.write(msg)
                return True
        except:
            # eat all errors
            pass
    return False
Пример #2
0
    def __init__(self, plot, parent=None):
        super(BackendMatplotlib, self).__init__(plot, parent)

        # matplotlib is handling keep aspect ratio at draw time
        # When keep aspect ratio is on, and one changes the limits and
        # ask them *before* next draw has been performed he will get the
        # limits without applying keep aspect ratio.
        # This attribute is used to ensure consistent values returned
        # when getting the limits at the expense of a replot
        self._dirtyLimits = True
        self._axesDisplayed = True
        self._matplotlibVersion = _parse_version(matplotlib.__version__)

        self.fig = Figure()
        self.fig.set_facecolor("w")

        self.ax = self.fig.add_axes([.15, .15, .75, .75], label="left")
        self.ax2 = self.ax.twinx()
        self.ax2.set_label("right")
        # Make sure background of Axes is displayed
        self.ax2.patch.set_visible(True)

        # Set axis zorder=0.5 so grid is displayed at 0.5
        self.ax.set_axisbelow(True)

        # disable the use of offsets
        try:
            self.ax.get_yaxis().get_major_formatter().set_useOffset(False)
            self.ax.get_xaxis().get_major_formatter().set_useOffset(False)
            self.ax2.get_yaxis().get_major_formatter().set_useOffset(False)
            self.ax2.get_xaxis().get_major_formatter().set_useOffset(False)
        except:
            _logger.warning('Cannot disabled axes offsets in %s '
                            % matplotlib.__version__)

        # critical for picking!!!!
        self.ax2.set_zorder(0)
        self.ax2.set_autoscaley_on(True)
        self.ax.set_zorder(1)
        # this works but the figure color is left
        if self._matplotlibVersion < _parse_version('2'):
            self.ax.set_axis_bgcolor('none')
        else:
            self.ax.set_facecolor('none')
        self.fig.sca(self.ax)

        self._background = None

        self._colormaps = {}

        self._graphCursor = tuple()

        self._enableAxis('right', False)
        self._isXAxisTimeSeries = False
Пример #3
0
    def __init__(self, plot, parent=None):
        super(BackendMatplotlib, self).__init__(plot, parent)

        # matplotlib is handling keep aspect ratio at draw time
        # When keep aspect ratio is on, and one changes the limits and
        # ask them *before* next draw has been performed he will get the
        # limits without applying keep aspect ratio.
        # This attribute is used to ensure consistent values returned
        # when getting the limits at the expense of a replot
        self._dirtyLimits = True
        self._axesDisplayed = True
        self._matplotlibVersion = _parse_version(matplotlib.__version__)

        self.fig = Figure()
        self.fig.set_facecolor("w")

        self.ax = self.fig.add_axes([.15, .15, .75, .75], label="left")
        self.ax2 = self.ax.twinx()
        self.ax2.set_label("right")
        # Make sure background of Axes is displayed
        self.ax2.patch.set_visible(True)

        # disable the use of offsets
        try:
            self.ax.get_yaxis().get_major_formatter().set_useOffset(False)
            self.ax.get_xaxis().get_major_formatter().set_useOffset(False)
            self.ax2.get_yaxis().get_major_formatter().set_useOffset(False)
            self.ax2.get_xaxis().get_major_formatter().set_useOffset(False)
        except:
            _logger.warning('Cannot disabled axes offsets in %s '
                            % matplotlib.__version__)

        # critical for picking!!!!
        self.ax2.set_zorder(0)
        self.ax2.set_autoscaley_on(True)
        self.ax.set_zorder(1)
        # this works but the figure color is left
        if self._matplotlibVersion < _parse_version('2'):
            self.ax.set_axis_bgcolor('none')
        else:
            self.ax.set_facecolor('none')
        self.fig.sca(self.ax)

        self._overlays = set()
        self._background = None

        self._colormaps = {}

        self._graphCursor = tuple()

        self._enableAxis('right', False)
        self._isXAxisTimeSeries = False
Пример #4
0
def perform_version_check(configfile=(_os.path.join(_os.path.expanduser("~"), ".graphlab", "config")),
                          _version_url=__GLCREATE_CURRENT_VERSION_URL__,
                          _feature_url=__GLCREATE_CURRENT_VERSION_FEATURES_URL__,
                          _outputstream=_sys.stderr):
    """
    Checks if currently running version of GraphLab Create is less than the
    version available from graphlab.com. Prints a message if the graphlab.com
    servers are reachable, and the current version is out of date. Does
    nothing otherwise.

    If the configfile contains a key "skip_version_check" in the Product
    section with non-zero value, this function does nothing.

    Also returns True if a message is printed, and returns False otherwise.
    """
    skip_version_check = False
    try:
        if (_os.path.isfile(configfile)):
            config = _ConfigParser.ConfigParser()
            config.read(configfile)
            section = 'Product'
            key = 'skip_version_check'
            skip_version_check = config.getboolean(section, key)
            __LOGGER__.debug("skip_version_check=%s" % str(skip_version_check))
    except:
        # eat all errors
        pass

    # skip version check set. Quit
    if not skip_version_check:
        try:
            latest_version = get_newest_version(timeout=1,
                                                _url=_version_url).strip()
            if _parse_version(latest_version) > _parse_version(_version_info.version).replace(".gpu",""):
                try:
                    _feature_url += '/' + get_major_version(_version_info.version)
                    latest_features = get_newest_features(timeout=1,
                                                          _url=_feature_url).strip()
                except:
                    latest_features = ''
                msg = ("A newer version of GraphLab Create (v%s) is available! "
                       "Your current version is v%s.\n"
                       "%s"  # this is the string of new features list
                       "You can use pip to upgrade the graphlab-create package. "
                       "For more information see https://dato.com/products/create/upgrade.") % \
                      (latest_version, _version_info.version, latest_features)
                _outputstream.write(msg)
                return True
        except:
            # eat all errors
            pass
    return False
Пример #5
0
    def test_get_conda_info(self):
        conda_info = _annotation.get_conda_info()
        conda_info_keys = sorted(list(conda_info.keys()))

        self.assertTrue('status' in conda_info_keys)

        if 'Failed' not in conda_info['status']:
            import conda
            if _parse_version(conda.__version__) >= _parse_version('4.2.0'):
                self.assertListEqual(self.ref_conda_420_info_keys,
                                     conda_info_keys)
            else:
                self.assertListEqual(self.ref_conda_410_info_keys,
                                     conda_info_keys)
            self.assertTrue(conda_info['status'] == 'Succeeded')
Пример #6
0
def parse_version(v):
    """
    In old versions of Python (for instance on Ubuntu 14.04),
    pkg_resources.parse_version returns a tuple and not a version object.
    """
    parsed = _parse_version(v)

    return VersionCompat(parsed)
Пример #7
0
def parse_version(v):
    """
    In old versions of Python (for instance on Ubuntu 14.04),
    pkg_resources.parse_version returns a tuple and not a version object.
    """
    parsed = _parse_version(v)

    return VersionCompat(parsed)
Пример #8
0
    def draw(self):
        """Overload draw

        It performs a full redraw (including overlays) of the plot.
        It also resets background and emit limits changed signal.

        This is directly called by matplotlib for widget resize.
        """
        # Hide axes borders to defer rendering
        if self.ax.axison:
            for spine in self.ax.spines.values():
                spine.set_visible(False)

        # Starting with mpl 2.1.0, toggling autoscale raises a ValueError
        # in some situations. See #1081, #1136, #1163,
        if self._matplotlibVersion >= _parse_version("2.0.0"):
            try:
                FigureCanvasQTAgg.draw(self)
            except ValueError as err:
                _logger.debug(
                    "ValueError caught while calling FigureCanvasQTAgg.draw: "
                    "'%s'", err)
        else:
            FigureCanvasQTAgg.draw(self)

        self.__drawItems(overlay=False)

        if self._hasOverlays():
            # Save background
            self._background = self.copy_from_bbox(self.fig.bbox)
        else:
            self._background = None  # Reset background

        # Check if limits changed due to a resize of the widget
        if self._limitsBeforeResize is not None:
            xLimits, yLimits, yRightLimits = self._limitsBeforeResize
            self._limitsBeforeResize = None

            if (xLimits != self.ax.get_xbound() or
                    yLimits != self.ax.get_ybound()):
                self._updateMarkers()

            if xLimits != self.ax.get_xbound():
                self._plot.getXAxis()._emitLimitsChanged()
            if yLimits != self.ax.get_ybound():
                self._plot.getYAxis(axis='left')._emitLimitsChanged()
            if yRightLimits != self.ax2.get_ybound():
                self._plot.getYAxis(axis='right')._emitLimitsChanged()

        self._drawOverlays()

        # Draw axes borders at last
        if self.ax.axison:
            for spine in self.ax.spines.values():
                spine.set_visible(True)
                self.ax.draw_artist(spine)
Пример #9
0
    def setXAxisLogarithmic(self, flag):
        # Workaround for matplotlib 2.1.0 when one tries to set an axis
        # to log scale with both limits <= 0
        # In this case a draw with positive limits is needed first
        if flag and self._matplotlibVersion >= _parse_version('2.1.0'):
            xlim = self.ax.get_xlim()
            if xlim[0] <= 0 and xlim[1] <= 0:
                self.ax.set_xlim(1, 10)
                self.draw()

        self.ax2.set_xscale('log' if flag else 'linear')
        self.ax.set_xscale('log' if flag else 'linear')
Пример #10
0
    def setXAxisLogarithmic(self, flag):
        # Workaround for matplotlib 2.1.0 when one tries to set an axis
        # to log scale with both limits <= 0
        # In this case a draw with positive limits is needed first
        if flag and self._matplotlibVersion >= _parse_version('2.1.0'):
            xlim = self.ax.get_xlim()
            if xlim[0] <= 0 and xlim[1] <= 0:
                self.ax.set_xlim(1, 10)
                self.draw()

        self.ax2.set_xscale('log' if flag else 'linear')
        self.ax.set_xscale('log' if flag else 'linear')
Пример #11
0
    def replot(self):
        BackendMatplotlib.replot(self)

        dirtyFlag = self._plot._getDirtyPlot()

        if dirtyFlag == 'overlay':
            # Only redraw overlays using fast rendering path
            if self._background is None:
                self._background = self.copy_from_bbox(self.fig.bbox)
            self.restore_region(self._background)
            self._drawOverlays()
            self.blit(self.fig.bbox)

        elif dirtyFlag:  # Need full redraw
            self.draw()

        # Workaround issue of rendering overlays with some matplotlib versions
        if (_parse_version('1.5') <= self._matplotlibVersion < _parse_version('2.1') and
                not hasattr(self, '_firstReplot')):
            self._firstReplot = False
            if self._overlays or self._graphCursor:
                qt.QTimer.singleShot(0, self.draw)  # Request async draw
Пример #12
0
    def replot(self):
        BackendMatplotlib.replot(self)

        dirtyFlag = self._plot._getDirtyPlot()

        if dirtyFlag == 'overlay':
            # Only redraw overlays using fast rendering path
            if self._background is None:
                self._background = self.copy_from_bbox(self.fig.bbox)
            self.restore_region(self._background)
            self._drawOverlays()
            self.blit(self.fig.bbox)

        elif dirtyFlag:  # Need full redraw
            self.draw()

        # Workaround issue of rendering overlays with some matplotlib versions
        if (_parse_version('1.5') <= self._matplotlibVersion < _parse_version('2.1') and
                not hasattr(self, '_firstReplot')):
            self._firstReplot = False
            if self._hasOverlays():
                qt.QTimer.singleShot(0, self.draw)  # Request async draw
Пример #13
0
    def _synchronizeBackgroundColors(self):
        backgroundColor = self._plot.getBackgroundColor().getRgbF()

        dataBackgroundColor = self._plot.getDataBackgroundColor()
        if dataBackgroundColor.isValid():
            dataBackgroundColor = dataBackgroundColor.getRgbF()
        else:
            dataBackgroundColor = backgroundColor

        if self.ax2.axison:
            self.fig.patch.set_facecolor(backgroundColor)
            if self._matplotlibVersion < _parse_version('2'):
                self.ax2.set_axis_bgcolor(dataBackgroundColor)
            else:
                self.ax2.set_facecolor(dataBackgroundColor)
        else:
            self.fig.patch.set_facecolor(dataBackgroundColor)
Пример #14
0
    def _synchronizeBackgroundColors(self):
        backgroundColor = self._plot.getBackgroundColor().getRgbF()

        dataBackgroundColor = self._plot.getDataBackgroundColor()
        if dataBackgroundColor.isValid():
            dataBackgroundColor = dataBackgroundColor.getRgbF()
        else:
            dataBackgroundColor = backgroundColor

        if self.ax.axison:
            self.fig.patch.set_facecolor(backgroundColor)
            if self._matplotlibVersion < _parse_version('2'):
                self.ax.set_axis_bgcolor(dataBackgroundColor)
            else:
                self.ax.set_facecolor(dataBackgroundColor)
        else:
            self.fig.patch.set_facecolor(dataBackgroundColor)
Пример #15
0
    def setYAxisLogarithmic(self, flag):
        # Workaround for matplotlib 2.0 issue with negative bounds
        # before switching to log scale
        if flag and self._matplotlibVersion >= _parse_version('2.0.0'):
            redraw = False
            for axis, dataRangeIndex in ((self.ax, 1), (self.ax2, 2)):
                ylim = axis.get_ylim()
                if ylim[0] <= 0 or ylim[1] <= 0:
                    dataRange = self._plot.getDataRange()[dataRangeIndex]
                    if dataRange is None:
                        dataRange = 1, 100  # Fallback
                    axis.set_ylim(*dataRange)
                    redraw = True
            if redraw:
                self.draw()

        self.ax2.set_yscale('log' if flag else 'linear')
        self.ax.set_yscale('log' if flag else 'linear')
Пример #16
0
    def setYAxisLogarithmic(self, flag):
        # Workaround for matplotlib 2.0 issue with negative bounds
        # before switching to log scale
        if flag and self._matplotlibVersion >= _parse_version('2.0.0'):
            redraw = False
            for axis, dataRangeIndex in ((self.ax, 1), (self.ax2, 2)):
                ylim = axis.get_ylim()
                if ylim[0] <= 0 or ylim[1] <= 0:
                    dataRange = self._plot.getDataRange()[dataRangeIndex]
                    if dataRange is None:
                        dataRange = 1, 100  # Fallback
                    axis.set_ylim(*dataRange)
                    redraw = True
            if redraw:
                self.draw()

        self.ax2.set_yscale('log' if flag else 'linear')
        self.ax.set_yscale('log' if flag else 'linear')
Пример #17
0
    def draw(self):
        """Overload draw

        It performs a full redraw (including overlays) of the plot.
        It also resets background and emit limits changed signal.

        This is directly called by matplotlib for widget resize.
        """
        # Starting with mpl 2.1.0, toggling autoscale raises a ValueError
        # in some situations. See #1081, #1136, #1163,
        if self._matplotlibVersion >= _parse_version("2.0.0"):
            try:
                FigureCanvasQTAgg.draw(self)
            except ValueError as err:
                _logger.debug(
                    "ValueError caught while calling FigureCanvasQTAgg.draw: "
                    "'%s'", err)
        else:
            FigureCanvasQTAgg.draw(self)

        if self._overlays or self._graphCursor:
            # Save background
            self._background = self.copy_from_bbox(self.fig.bbox)
        else:
            self._background = None  # Reset background

        # Check if limits changed due to a resize of the widget
        if self._limitsBeforeResize is not None:
            xLimits, yLimits, yRightLimits = self._limitsBeforeResize
            self._limitsBeforeResize = None

            if (xLimits != self.ax.get_xbound() or
                    yLimits != self.ax.get_ybound()):
                self._updateMarkers()

            if xLimits != self.ax.get_xbound():
                self._plot.getXAxis()._emitLimitsChanged()
            if yLimits != self.ax.get_ybound():
                self._plot.getYAxis(axis='left')._emitLimitsChanged()
            if yRightLimits != self.ax2.get_ybound():
                self._plot.getYAxis(axis='right')._emitLimitsChanged()

        self._drawOverlays()
Пример #18
0
def parse_arch_version(v: str) -> Tuple[int, Version]:
  if ':' in v:
    epoch = int(v.split(':', 1)[0])
  else:
    epoch = 0
  return epoch, _parse_version(v)
from __future__ import print_function as _
from pkg_resources import parse_version as _parse_version
from ._notification_manager import notification_manager

import os as _os
import sys as _sys
import json as _json

import dash as _dash

_ddk_needs_polyfills = _parse_version(
    _dash.__version__) < _parse_version('1.6.1')
_resource_modifier = '.polyfill' if _ddk_needs_polyfills else ''

# noinspection PyUnresolvedReferences
from ._imports_ import *
from ._imports_ import __all__
from ._CopyText import _CopyText

from . import shortcuts
from . import datasets
from ._init_py_ddk_template import _setup_template

_setup_template()

if not hasattr(_dash, 'development'):
    print(
        'Dash was not successfully imported. '
        'Make sure you don\'t have a file '
        'named \n"dash.py" in your current directory.',
        file=_sys.stderr)
Пример #20
0
def parse_arch_version(v):
    if ':' in v:
        epoch = int(v.split(':', 1)[0])
    else:
        epoch = 0
    return epoch, _parse_version(v)
Пример #21
0
    import time until the library is actually used."""
    def __init__(self, error):
        self._error = error

    def __getattr__(self, name):
        raise self._error


_PYMONGOCRYPT_LIB = os.environ.get('PYMONGOCRYPT_LIB')
try:
    if _PYMONGOCRYPT_LIB:
        lib = ffi.dlopen(_PYMONGOCRYPT_LIB)
    else:
        try:
            lib = ffi.dlopen(_path)
        except OSError as exc:
            # Fallback to libmongocrypt installed on the system.
            lib = ffi.dlopen('mongocrypt')
except OSError as exc:
    # dlopen raises OSError when the library cannot be found.
    # Delay the error until the library is actually used.
    lib = _Library(exc)
else:
    # Check the libmongocrypt version when the library is found.
    _limongocrypt_version = _parse_version(libmongocrypt_version())
    if _limongocrypt_version < _parse_version(_MIN_LIBMONGOCRYPT_VERSION):
        exc = RuntimeError(
            "Expected libmongocrypt version %s or greater, found %s" %
            (_MIN_LIBMONGOCRYPT_VERSION, libmongocrypt_version()))
        lib = _Library(exc)
Пример #22
0
def parse_arch_version(v: str) -> Tuple[int, Version]:
  if ':' in v:
    epoch = int(v.split(':', 1)[0])
  else:
    epoch = 0
  return epoch, _parse_version(v)
Пример #23
0
    def addImage(self, data, legend,
                 origin, scale, z,
                 selectable, draggable,
                 colormap, alpha):
        # Non-uniform image
        # http://wiki.scipy.org/Cookbook/Histograms
        # Non-linear axes
        # http://stackoverflow.com/questions/11488800/non-linear-axes-for-imshow-in-matplotlib
        for parameter in (data, legend, origin, scale, z,
                          selectable, draggable):
            assert parameter is not None

        origin = float(origin[0]), float(origin[1])
        scale = float(scale[0]), float(scale[1])
        height, width = data.shape[0:2]

        picker = (selectable or draggable)

        # Debian 7 specific support
        # No transparent colormap with matplotlib < 1.2.0
        # Add support for transparent colormap for uint8 data with
        # colormap with 256 colors, linear norm, [0, 255] range
        if self._matplotlibVersion < _parse_version('1.2.0'):
            if (len(data.shape) == 2 and colormap.getName() is None and
                    colormap.getColormapLUT() is not None):
                colors = colormap.getColormapLUT()
                if (colors.shape[-1] == 4 and
                        not numpy.all(numpy.equal(colors[3], 255))):
                    # This is a transparent colormap
                    if (colors.shape == (256, 4) and
                            colormap.getNormalization() == 'linear' and
                            not colormap.isAutoscale() and
                            colormap.getVMin() == 0 and
                            colormap.getVMax() == 255 and
                            data.dtype == numpy.uint8):
                        # Supported case, convert data to RGBA
                        data = colors[data.reshape(-1)].reshape(
                            data.shape + (4,))
                    else:
                        _logger.warning(
                            'matplotlib %s does not support transparent '
                            'colormap.', matplotlib.__version__)

        if ((height * width) > 5.0e5 and
                origin == (0., 0.) and scale == (1., 1.)):
            imageClass = ModestImage
        else:
            imageClass = AxesImage

        # All image are shown as RGBA image
        image = imageClass(self.ax,
                           label="__IMAGE__" + legend,
                           interpolation='nearest',
                           picker=picker,
                           zorder=z,
                           origin='lower')

        if alpha < 1:
            image.set_alpha(alpha)

        # Set image extent
        xmin = origin[0]
        xmax = xmin + scale[0] * width
        if scale[0] < 0.:
            xmin, xmax = xmax, xmin

        ymin = origin[1]
        ymax = ymin + scale[1] * height
        if scale[1] < 0.:
            ymin, ymax = ymax, ymin

        image.set_extent((xmin, xmax, ymin, ymax))

        # Set image data
        if scale[0] < 0. or scale[1] < 0.:
            # For negative scale, step by -1
            xstep = 1 if scale[0] >= 0. else -1
            ystep = 1 if scale[1] >= 0. else -1
            data = data[::ystep, ::xstep]

        if self._matplotlibVersion < _parse_version('2.1'):
            # matplotlib 1.4.2 do not support float128
            dtype = data.dtype
            if dtype.kind == "f" and dtype.itemsize >= 16:
                _logger.warning("Your matplotlib version do not support "
                                "float128. Data converted to float64.")
                data = data.astype(numpy.float64)

        if data.ndim == 2:  # Data image, convert to RGBA image
            data = colormap.applyToData(data)

        image.set_data(data)

        self.ax.add_artist(image)

        return image
Пример #24
0
from itertools import cycle

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from pkg_resources import parse_version as _parse_version

from magni.cs.phase_transition import config as _conf
from magni.utils.plotting import linestyles as _linestyles
from magni.utils.validation import decorate_validation as _decorate_validation
from magni.utils.validation import validate_generic as _generic
from magni.utils.validation import validate_levels as _levels
from magni.utils.validation import validate_numeric as _numeric

if _parse_version(mpl.__version__) >= _parse_version('1.5.0'):
    _mpl_prop_era = True
else:
    _mpl_prop_era = False


def plot_phase_transitions(curves,
                           plot_l1=True,
                           output_path=None,
                           legend_loc='upper left',
                           errorevery=None,
                           reference_curves=None):
    r"""
    Plot of a set of phase transition boundary curves.

    The set of phase transition boundary curves are plotted an saved under the
Пример #25
0
def get_conda_info():
    """
    Return a dictionary contianing information from Conda.

    `Conda <http://conda.pydata.org/>`_ is the package manager for the Anaconda
    scientific Python distribution. This function will return various
    information about the Anaconda installation on the system by querying the
    Conda package database.

    .. warning::

        THIS IS HIGHLY EXPERIMENTAL AND MAY BREAK WITHOUT FURTHER NOTICE.

    .. note::

        This only works with the conda root environment.

    Returns
    -------
    conda_info : dict
        Various information from conda (see notes below for further details).

    Notes
    -----
    If the Python intepreter is unable to locate and import the conda package,
    an empty dicionary is returned.

    The returned dictionary contains the same infomation that is returned by
    "conda info" in addition to an overview of the linked modules in the
    Anaconda installation as well as information about the "conda env" if it is
    available. Specifically, the returned dictionary has the following keys:

    * platform
    * conda_version
    * root_prefix
    * default_prefix
    * envs_dirs
    * package_cache
    * channels
    * config_file
    * linked_modules
    * env_export

    For conda < 4.2.0, it also includes the key:

    * is_foreign_system

    For conda >= 4.2.0, it also includes the keys:

    * python_version
    * conda_is_private
    * offline_mode

    Additionally, the returned dictionary has a key named *status*, which can
    have either of the following values:

    * 'Succeeded' (Everything seems to be OK)
    * 'Failed' (Something went wrong - a few details are incluede in the key)

    If "conda-env" is installed on the system, the `env_export` essentially
    holds the infomation from "conda env export -n root" as a dictionary. The
    information provided by this key partially overlaps with the infomation in
    the `linked_modules` and `modules_info` keys.

    """

    try:
        import conda
        import conda.config
        import conda.install
    except ImportError:
        return {'status': 'Failed: Conda not importable'}

    # Conda info + linked modules
    if _parse_version(conda.__version__) >= _parse_version('4.2.0'):
        try:
            import conda.models.channel
            import conda.base.context
        except ImportError:
            return {'status': 'Failed: Conda context not importable'}
        conda_channel_urls = conda.models.channel.prioritize_channels(
            conda.base.context.context.channels)

    else:
        # Ugly hack to silence the
        # "Using Anaconda Cloud api site https://api.anaconda.org"
        # message being sent to stderr by the binstar/anaconda client.
        with _silence_stderr():
            conda_channel_urls = conda.config.get_channel_urls()

    conda_info = {
        'platform': conda.config.subdir,
        'conda_version': conda.__version__,
        'root_prefix': conda.config.root_dir,
        'default_prefix': conda.config.default_prefix,
        'envs_dirs': json.dumps(conda.config.envs_dirs),
        'package_cache': json.dumps(conda.config.pkgs_dirs),
        'channels': json.dumps(conda_channel_urls),
        'config_file': json.dumps(conda.config.rc_path)
    }

    # Ugly hack to silence the
    # "Using Anaconda Cloud api site https://api.anaconda.org"
    # message being sent to stderr by the binstar/anaconda client.
    with _silence_stderr():
        linked_modules = sorted(conda.install.linked(conda.config.root_dir))

    if _parse_version(conda.__version__) >= _parse_version('4.2.0'):
        conda_info['python_version'] = '.'.join(map(str, sys.version_info))
        conda_info['conda_is_private'] = json.dumps(
            conda.base.context.context.conda_private)
        conda_info['offline_mode'] = json.dumps(
            conda.base.context.context.offline)
    else:
        conda_info['is_foreign_system'] = json.dumps(bool(
            conda.config.foreign))

    modules_info = {
        module: conda.install.is_linked(conda_info['root_prefix'], module)
        for module in linked_modules
    }
    conda_info['modules_info'] = json.dumps(modules_info)
    conda_info['linked_modules'] = json.dumps(linked_modules)
    conda_info['status'] = 'Succeeded'

    # Conda env export
    try:
        import conda_env.env
        conda_info['env_export'] = json.dumps(
            conda_env.env.from_environment('root',
                                           conda.config.root_dir).to_dict())
    except ImportError:
        conda_info['env_export'] = 'Failed: conda-env not available'

    return conda_info
Пример #26
0
def parse_arch_version(v):
  if ':' in v:
    epoch = int(v.split(':', 1)[0])
  else:
    epoch = 0
  return (epoch,) + _parse_version(v)
    def addImage(self, data, legend, origin, scale, z, selectable, draggable,
                 colormap, alpha):
        # Non-uniform image
        # http://wiki.scipy.org/Cookbook/Histograms
        # Non-linear axes
        # http://stackoverflow.com/questions/11488800/non-linear-axes-for-imshow-in-matplotlib
        for parameter in (data, legend, origin, scale, z, selectable,
                          draggable):
            assert parameter is not None

        origin = float(origin[0]), float(origin[1])
        scale = float(scale[0]), float(scale[1])
        height, width = data.shape[0:2]

        picker = (selectable or draggable)

        # Debian 7 specific support
        # No transparent colormap with matplotlib < 1.2.0
        # Add support for transparent colormap for uint8 data with
        # colormap with 256 colors, linear norm, [0, 255] range
        if self._matplotlibVersion < _parse_version('1.2.0'):
            if (len(data.shape) == 2 and colormap.getName() is None
                    and colormap.getColormapLUT() is not None):
                colors = colormap.getColormapLUT()
                if (colors.shape[-1] == 4
                        and not numpy.all(numpy.equal(colors[3], 255))):
                    # This is a transparent colormap
                    if (colors.shape == (256, 4)
                            and colormap.getNormalization() == 'linear'
                            and not colormap.isAutoscale()
                            and colormap.getVMin() == 0
                            and colormap.getVMax() == 255
                            and data.dtype == numpy.uint8):
                        # Supported case, convert data to RGBA
                        data = colors[data.reshape(-1)].reshape(data.shape +
                                                                (4, ))
                    else:
                        _logger.warning(
                            'matplotlib %s does not support transparent '
                            'colormap.', matplotlib.__version__)

        if ((height * width) > 5.0e5 and origin == (0., 0.)
                and scale == (1., 1.)):
            imageClass = ModestImage
        else:
            imageClass = AxesImage

        # All image are shown as RGBA image
        image = imageClass(self.ax,
                           label="__IMAGE__" + legend,
                           interpolation='nearest',
                           picker=picker,
                           zorder=z,
                           origin='lower')

        if alpha < 1:
            image.set_alpha(alpha)

        # Set image extent
        xmin = origin[0]
        xmax = xmin + scale[0] * width
        if scale[0] < 0.:
            xmin, xmax = xmax, xmin

        ymin = origin[1]
        ymax = ymin + scale[1] * height
        if scale[1] < 0.:
            ymin, ymax = ymax, ymin

        image.set_extent((xmin, xmax, ymin, ymax))

        # Set image data
        if scale[0] < 0. or scale[1] < 0.:
            # For negative scale, step by -1
            xstep = 1 if scale[0] >= 0. else -1
            ystep = 1 if scale[1] >= 0. else -1
            data = data[::ystep, ::xstep]

        if self._matplotlibVersion < _parse_version('2.1'):
            # matplotlib 1.4.2 do not support float128
            dtype = data.dtype
            if dtype.kind == "f" and dtype.itemsize >= 16:
                _logger.warning("Your matplotlib version do not support "
                                "float128. Data converted to float64.")
                data = data.astype(numpy.float64)

        if data.ndim == 2:  # Data image, convert to RGBA image
            data = colormap.applyToData(data)

        image.set_data(data)

        self.ax.add_artist(image)

        return image
Пример #28
0
def get_DCT(shape, overcomplete_shape=None):
    """
    Get the DCT fast operation dictionary for the given image shape.

    Parameters
    ----------
    shape : list or tuple
        The shape of the image for which the dictionary is the DCT dictionary.
    overcomplete_shape : list or tuple, optional
        The shape of the (overcomplete) frequency domain for the DCT
        dictionary. The entries must be greater than or equal to the
        corresponding entries in `shape`.

    Returns
    -------
    matrix : magni.utils.matrices.Matrix
        The specified DCT dictionary.

    See Also
    --------
    magni.utils.matrices.Matrix : The matrix emulator class.

    Examples
    --------
    Create a dummy image:

    >>> import numpy as np, magni
    >>> img = np.random.randn(64, 64)
    >>> vec = magni.imaging.mat2vec(img)

    Perform DCT in the ordinary way:

    >>> dct_normal = magni.imaging.dictionaries._fastops.dct2(vec, img.shape)

    Perform DCT using the present function:

    >>> from magni.imaging.dictionaries import get_DCT
    >>> matrix = get_DCT(img.shape)
    >>> dct_matrix = matrix.T.dot(vec)

    Check that the two ways produce the same result:

    >>> np.allclose(dct_matrix, dct_normal)
    True

    Compute the overcomplete transform (and back again) and check that the
    resulting image is identical to the original. Notice how this example first
    ensures that the necessary version of SciPy is available:

    >>> from pkg_resources import parse_version
    >>> from scipy import __version__ as _scipy_version
    >>> if parse_version(_scipy_version) >= parse_version('0.16.0'):
    ...     matrix = get_DCT(img.shape, img.shape)
    ...     dct_matrix = matrix.T.dot(vec)
    ...     vec_roundtrip = matrix.dot(dct_matrix)
    ...     np.allclose(vec, vec_roundtrip)
    ... else:
    ...     True
    True

    """
    @_decorate_validation
    def validate_input():
        _levels('shape', (_generic(None, 'explicit collection', len_=2),
                          _numeric(None, 'integer', range_='[1;inf)')))

        if overcomplete_shape is not None:
            _generic('overcomplete_shape', 'explicit collection', len_=2),
            _numeric(('overcomplete_shape', 0),
                     'integer',
                     range_='[{};inf)'.format(shape[0]))
            _numeric(('overcomplete_shape', 1),
                     'integer',
                     range_='[{};inf)'.format(shape[1]))

    validate_input()

    entries = shape[0] * shape[1]

    if overcomplete_shape is None:
        args = (shape, )
        shape = (entries, entries)
    else:
        if _parse_version(_scipy_version) < _parse_version('0.16.0'):
            raise NotImplementedError(
                'Over-complete DCT requires SciPy >= 0.16.0')

        args = (shape, overcomplete_shape)
        shape = (entries, overcomplete_shape[0] * overcomplete_shape[1])

    return _Matrix(_fastops.idct2, _fastops.dct2, args, shape)
Пример #29
0
"""

from __future__ import division
import unittest

import numpy as np
from pkg_resources import parse_version as _parse_version
from scipy import __version__ as _scipy_version

from magni.imaging.dictionaries import get_DCT
from magni.imaging.dictionaries import get_DFT
from magni.imaging import mat2vec
from magni.imaging import vec2mat

_scipy_pre_016 = _parse_version(_scipy_version) < _parse_version('0.16.0')


class TransformsMixin(object):
    """
    Test of overcomplete transforms on a square matrix.

    """
    @unittest.skipIf(_scipy_pre_016, "Not supported for SciPy <= 0.16.0")
    def test_wrong_size_dct(self):
        # Check that the function does not allow specifying an
        # _under_-complete transform
        with self.assertRaises(ValueError):
            matrix = get_DCT(
                self.array_shape,
                (self.array_shape[0] - 1, self.array_shape[1] - 1))