def test_gan(tmpdir): reset_seed() model = GAN(data_dir=tmpdir) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model) trainer.test(model)
def test_gan(tmpdir): seed_everything() model = GAN(data_dir=tmpdir) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model) trainer.test(model)
def test_gan(tmpdir, datadir, dm_cls): seed_everything() dm = dm_cls(data_dir=datadir, num_workers=0) model = GAN(*dm.size()) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, datamodule=dm) trainer.test(datamodule=dm, ckpt_path=None)
def test_gan(tmpdir, dm_cls): seed_everything() dm = dm_cls() model = GAN(*dm.size()) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, dm) trainer.test(datamodule=dm)
def test_latent_dim_interpolator(tmpdir): class FakeTrainer(object): def __init__(self): self.current_epoch = 1 self.global_step = 1 self.logger = DummyLogger() model = GAN(3, 28, 28) cb = LatentDimInterpolator(interpolate_epoch_interval=2) cb.on_epoch_end(FakeTrainer(), model)