def test_byol(tmpdir, datadir):
    datamodule = CIFAR10DataModule(data_dir=datadir, num_workers=0, batch_size=2)
    datamodule.train_transforms = CPCTrainTransformsCIFAR10()
    datamodule.val_transforms = CPCEvalTransformsCIFAR10()

    model = BYOL(data_dir=datadir, num_classes=datamodule)
    trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir)
    trainer.fit(model, datamodule=datamodule)
Пример #2
0
def test_byol(tmpdir):
    seed_everything()

    datamodule = CIFAR10DataModule(data_dir=tmpdir, num_workers=0, batch_size=2)
    datamodule.train_transforms = CPCTrainTransformsCIFAR10()
    datamodule.val_transforms = CPCEvalTransformsCIFAR10()

    model = BYOL(data_dir=tmpdir, num_classes=datamodule)
    trainer = pl.Trainer(fast_dev_run=True, max_epochs=1, default_root_dir=tmpdir, max_steps=2)
    trainer.fit(model, datamodule)
    loss = trainer.progress_bar_dict['loss']

    assert float(loss) < 1.0
Пример #3
0
def byol_example():
	from pl_bolts.models.self_supervised import BYOL
	from pl_bolts.datamodules import CIFAR10DataModule
	from pl_bolts.models.self_supervised.simclr import SimCLRTrainDataTransform, SimCLREvalDataTransform

	# Data module.
	dm = CIFAR10DataModule(num_workers=12, batch_size=32)
	dm.train_transforms = SimCLRTrainDataTransform(input_height=32)
	dm.val_transforms = SimCLREvalDataTransform(input_height=32)

	# Model.
	model = BYOL(num_classes=10)

	# Fit.
	trainer = pl.Trainer(gpus=2, accelerator="ddp")
	trainer.fit(model, datamodule=dm)
Пример #4
0
import pytorch_lightning as pl
from pl_bolts.models.self_supervised import BYOL
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.models.self_supervised.simclr.transforms import (
    SimCLREvalDataTransform, SimCLRTrainDataTransform)

# model
model = BYOL(num_classes=10)

# data
dm = CIFAR10DataModule(num_workers=4)
dm.train_transforms = SimCLRTrainDataTransform(32)
dm.val_transforms = SimCLREvalDataTransform(32)

trainer = pl.Trainer()
trainer.fit(model, dm)