print("Wrong input") override = 1 if override == True: print("Over Riding all input requirements with default values") # Datasets if override == 0: dataset_option = (input( "Which Dataset you want to run the ConvNet Model on?\nX: Image-Classification\nS : SIGNS Dataset\nN: Hand-Written Digit Classification" + "\nNb : Hand-Written Digits BigDatset [MNIST Datset]\nH: Happy Face Detection\t" )) if dataset_option == "X": train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset( ) train_set_x = train_set_x_orig print(train_set_x.shape) print(test_set_x_orig.shape) test_set_x = test_set_x_orig print(test_set_x.shape) num_px = train_set_x_orig.shape[1] X = train_set_x / 255 Y = train_set_y X_test = test_set_x / 255 Y_test = test_set_y print(Y) print(Y_test) print("Y_test.shape : " + str(Y_test.shape))
print("Wrong input") override = 1 if override == True: print("Over Riding all input requirements with default values") # Datasets if override == 0: dataset_option = (input( "Which Dataset you want to run the ConvNet Model on?\nX: Image-Classification\nS : SIGNS Dataset\nN: Hand-Written Digit Classification" + "\nNb : Hand-Written Digits BigDatset [MNIST Datset]\nH: Happy Face Detection\t" )) if dataset_option == "X": train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset( ) train_set_x = train_set_x_orig print(train_set_x.shape) print(test_set_x_orig.shape) test_set_x = test_set_x_orig print(test_set_x.shape) num_px = train_set_x_orig.shape[1] X = train_set_x / 255 Y = train_set_y X_test = test_set_x / 255 Y_test = test_set_y print(Y_test) print("Y_test.shape : " + str(Y_test.shape)) print("X_test.shape : " + str(X_test.shape))