print("Wrong input")
    override = 1

if override == True:
    print("Over Riding all input requirements with default values")

# Datasets
if override == 0:

    dataset_option = (input(
        "Which Dataset you want to run the ConvNet Model on?\nX: Image-Classification\nS : SIGNS Dataset\nN: Hand-Written Digit Classification"
        +
        "\nNb : Hand-Written Digits BigDatset [MNIST Datset]\nH: Happy Face Detection\t"
    ))
    if dataset_option == "X":
        train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset(
        )
        train_set_x = train_set_x_orig
        print(train_set_x.shape)
        print(test_set_x_orig.shape)
        test_set_x = test_set_x_orig
        print(test_set_x.shape)
        num_px = train_set_x_orig.shape[1]

        X = train_set_x / 255
        Y = train_set_y
        X_test = test_set_x / 255
        Y_test = test_set_y

        print(Y)
        print(Y_test)
        print("Y_test.shape : " + str(Y_test.shape))
Пример #2
0
    print("Wrong input")
    override = 1

if override == True:
    print("Over Riding all input requirements with default values")

# Datasets
if override == 0:

    dataset_option = (input(
        "Which Dataset you want to run the ConvNet Model on?\nX: Image-Classification\nS : SIGNS Dataset\nN: Hand-Written Digit Classification"
        +
        "\nNb : Hand-Written Digits BigDatset [MNIST Datset]\nH: Happy Face Detection\t"
    ))
    if dataset_option == "X":
        train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset(
        )
        train_set_x = train_set_x_orig
        print(train_set_x.shape)
        print(test_set_x_orig.shape)
        test_set_x = test_set_x_orig
        print(test_set_x.shape)
        num_px = train_set_x_orig.shape[1]

        X = train_set_x / 255
        Y = train_set_y
        X_test = test_set_x / 255
        Y_test = test_set_y

        print(Y_test)
        print("Y_test.shape : " + str(Y_test.shape))
        print("X_test.shape : " + str(X_test.shape))