Пример #1
0
def make_planar(G):
    if planarity.is_planar(G.edges()):
        return G
    all_kuratowski_edges = []
    next_G = G.copy()

    while planarity.is_planar(G.edges()) == False:
        edge_list = planarity.kuratowski_edges(G)
        print(len(edge_list))
        G.remove_edges_from(edge_list)
        for edge in edge_list:
            all_kuratowski_edges.append(edge)

    itr = 0
    replaced = []
    for edge in all_kuratowski_edges:
        neighbors = nx.neighbors(G, edge[1])
        if itr < len(neighbors) and edge not in replaced:
            G.add_edge(edge[0], neighbors[itr])
        elif itr >= len(neighbors) and edge not in replaced:
            global neighbors
            neighbors = nx.neighbors(G, edge[0])
            itr = 0
        itr = itr + 1

    print(planarity.is_planar(G), nx.number_of_edges(G))
    print(planarity.is_planar(next_G), nx.number_of_edges(next_G))
def round_robin_thickness_graphs(g):
    """
    Generate round robin thickness graphs
    Take best known solution (naive)
    Allocate n-1 graphs (if > 1 in naive solution)
    Sort Edges
    Round robin edge assignment
    (i.e. try to spread out the edges for each node across the graphs)
    :param g:
    :return:
    """
    naive_best = naive_thickness_graphs(g)
    if len(naive_best) == 1:
        return naive_best

    gs = [nx.Graph() for _ in range(len(naive_best) - 1)]
    gedges = [e for e in g.edges()]
    gedges.sort()

    vs = set()
    for e in g.edges():
        vs.add(e[0])
        vs.add(e[1])

    for v in vs:
        for cur in gs:
            cur.add_node(v)

    not_added = []
    for i, edge in enumerate(gedges):
        gi = i % len(gs)
        gs[gi].add_edge(edge[0], edge[1])
        if not is_planar(gs[gi]):
            not_added.append(edge)
            gs[gi].remove_edge(edge[0], edge[1])

    not_added_again = []
    for e in not_added:
        added = False
        for gcur in gs:
            gcur.add_edge(e[0], e[1])
            if is_planar(gcur):
                added = True
                break
            else:
                gcur.remove_edge(e[0], e[1])

        if not added:
            not_added_again.append(e)

    if len(not_added_again) > 0:
        return naive_best

    return gs
def thickness(G):
    # Complete Graphs
    #
    # The thickness of an arbitrary complete graph is given by
    # floor((n+7)/6) (except for where n=9,10 where thickness is 3)
    #
    # Alekseev, V. B.; Goncakov, V. S.
    # https://mathscinet.ams.org/mathscinet-getitem?mr=0460162
    if G.number_of_edges() == edge_count_of_complete_graph(
            G.number_of_nodes()):
        if G.number_of_nodes() == 9 or G.number_of_nodes() == 10:
            return 3
        else:
            return int(floor((G.number_of_nodes() + 7) / 6))

    # Planar Graphs
    #
    # The thickness of any planar graph is 1
    if is_planar(G):
        return 1

    # Small Graphs
    #
    # If a graph is pretty small, we can run a brute-force-search
    if G.number_of_edges() < 8:
        return brute_force_thickness(G)

    # All other graphs
    #
    # since we couldn't find a characterization that helps with this graph, we check using
    # Alex's brute-force-like search algorithm
    #
    # note: this is not guaranteed to yield the actual thickness; only a number greater than or equal to it
    return round_robin_thickness(G)
def naive_thickness_graphs(g):
    """
    Generate the thickness graphs themselves
    :param g:
    :return:
    """
    vs = set()
    gs = [nx.Graph()]
    for e in g.edges():
        vs.add(e[0])
        vs.add(e[1])
        added = False
        for current in gs:
            current.add_edge(e[0], e[1])
            if is_planar(current):
                added = True
                break
            else:
                current.remove_edge(e[0], e[1])

        if not added:
            ng = nx.Graph()
            ng.add_edge(e[0], e[1])
            gs.append(ng)
    for g in gs:
        for v in vs:
            g.add_node(v)
    return gs
Пример #5
0
def pmfg(df):
    n = len(df)
    A = np.zeros([n,n])
    rho = df.as_matrix()

    rholist = []
    for i in range(0, n):
        for j in range(i+1, n):
            rholist.append([rho[i][j], i, j])
    rholist = np.array(rholist)
    rholist = rholist[rholist[:,0].argsort()].tolist()
    rholist = [rholist[len(rholist)-i-1] for i in range(len(rholist))]

    control = 0
    edgelist = []
    for t in range(0, len(rholist)):
        if control <= 3*(n-2)-1:
            i, j = rholist[t][1], rholist[t][2]
            A[i][j], A[j][i] = 1, 1
            edgelist.append((str(i),str(j)))

            if is_planar(edgelist) == False:
                A[i][j], A[j][i] = 0, 0
                edgelist = edgelist[:-1]
            else:
                control += 1
    return pd.DataFrame(data=A, columns=df.columns, index=df.index)
Пример #6
0
    def construct_pmfg(self,
                       df_distance,
                       matrix_panel,
                       inv=False,
                       threshold=0.0):
        """Trim the provided adjacency matrix to create a Planary Maximum Filtered Graph
            matrix inserting all the node and edge metrics into the graph
        """
        if inv:
            dist_matrix = 1.0 / df_distance.values
        else:
            dist_matrix = df_distance.values
        index_upper_triangular = np.triu_indices(dist_matrix.shape[0], 1)
        isort = np.argsort(dist_matrix[index_upper_triangular])
        G = nx.Graph()
        names = df_distance.columns.unique()

        for k in np.arange(0, len(isort)):
            u = index_upper_triangular[0][isort[k]]
            v = index_upper_triangular[1][isort[k]]
            if np.abs(
                    dist_matrix[u, v]
            ) > threshold / len(names):  # optional bonferroni correction
                edgedict = {'weight': float(dist_matrix[u, v])}
                for item in matrix_panel.items:
                    edgedict[item] = float(matrix_panel.ix[item, u, v])
                G.add_edge(u, v, edgedict)
                if not planarity.is_planar(G):
                    G.remove_edge(u, v)
        labels = {}
        for i, n in enumerate(names):
            name = names[i]
            labels[i] = name
        G = nx.relabel_nodes(G, labels)
        return G
Пример #7
0
    def construct_pmfg(self, df_distance, matrix_panel, inv=False, threshold=0.0):
        """Trim the provided adjacency matrix to create a Planary Maximum Filtered Graph
            matrix inserting all the node and edge metrics into the graph
        """
        if inv:
            dist_matrix = 1.0/df_distance.values
        else:
            dist_matrix = df_distance.values
        index_upper_triangular = np.triu_indices(dist_matrix.shape[0], 1)
        isort = np.argsort(dist_matrix[index_upper_triangular])
        G = nx.Graph()
        names = df_distance.columns.unique()

        for k in np.arange(0, len(isort)):
            u = index_upper_triangular[0][isort[k]]
            v = index_upper_triangular[1][isort[k]]
            if np.abs(dist_matrix[u, v]) > threshold / len(names): # optional bonferroni correction
                edgedict = {'weight': float(dist_matrix[u, v])}
                for item in matrix_panel.items:
                    edgedict[item] = float(matrix_panel.ix[item, u, v])
                G.add_edge(u, v, edgedict)
                if not planarity.is_planar(G):
                    G.remove_edge(u, v)
        labels = {}
        for i, n in enumerate(names):
            name = names[i]
            labels[i] = name
        G = nx.relabel_nodes(G, labels)
        return G
Пример #8
0
def network_is_planar(network):
    """Check if the network is planar.

    A network is planar if it can be drawn in the plane without crossing edges.
    If a network is planar, it can be shown that an embedding of the network in
    the plane exists, and, furthermore, that straight-line embedding in the plane
    exists.

    Warning:
        This function uses the python binding of the *edge addition planarity suite*
        in the background. The package is available on GitHub: https://github.com/hagberg/planarity.

    Parameters:
        network (compas.datastructures.network.Network): The network object.

    Returns:
        bool: ``True`` if the network is planar. ``False`` otherwise.

    Raises:
        ImportError: If the planarity package is not installed.

    Example:

        .. plot::
            :include-source:

            import compas

            from compas.datastructures.network import Network
            from compas.visualization.plotters import NetworkPlotter
            from compas.datastructures.network.algorithms import network_is_planar
            from compas.datastructures.network.algorithms import network_find_crossings

            network = Network.from_obj(compas.get_data('lines.obj'))

            network.add_edge(21, 29)
            network.add_edge(17, 28)

            if not network_is_planar(network):
                crossings = network_find_crossings(network)
            else:
                crossings = []

            plotter = NetworkPlotter(network)

            plotter.draw_vertices(radius=0.15, text={key: key for key in network.vertices()})
            plotter.draw_edges(color={edge: '#ff0000' for edges in crossings for edge in edges})

            plotter.show()

    """
    try:
        import planarity
    except ImportError:
        print(
            "Planarity is not installed. Get Planarity at https://github.com/hagberg/planarity."
        )
        raise
    return planarity.is_planar(network.edges())
Пример #9
0
def graphFactoryPlanarErdosRenyiGenration(nb_graph,size_graph,graphtype,edgeProba,section='all'):
    cpt=0
    while cpt <= nb_graph:
        G = nx.gnp_random_graph(size_graph,edgeProba)
        if graphToCSV(G,graphtype,section,pl.is_planar(G)):
            cpt+=1
            if cpt%10 == 0:
                print(str(cpt)+'/'+str(nb_graph)+' '+str(100*cpt/nb_graph)+'%')
Пример #10
0
    def test_is_planar_unions(self):
        try:
            from itertools import combinations,product
        except ImportError:
            raise SkipTest('itertools.combinations not found')

        for (G1,G2) in combinations(self.planar,2):
            G=nx.disjoint_union(G1,G2)
            assert_true(planarity.is_planar(G))

        for (G1,G2) in combinations(self.non_planar,2):
            G=nx.disjoint_union(G1,G2)
            assert_false(planarity.is_planar(G))

        for (G1,G2) in product(self.planar,self.non_planar):
            G=nx.disjoint_union(G1,G2)
            assert_false(planarity.is_planar(G))
Пример #11
0
    def test_is_planar_unions(self):
        try:
            from itertools import combinations, product
        except ImportError:
            raise SkipTest('itertools.combinations not found')

        for (G1, G2) in combinations(self.planar, 2):
            G = nx.disjoint_union(G1, G2)
            assert_true(planarity.is_planar(G))

        for (G1, G2) in combinations(self.non_planar, 2):
            G = nx.disjoint_union(G1, G2)
            assert_false(planarity.is_planar(G))

        for (G1, G2) in product(self.planar, self.non_planar):
            G = nx.disjoint_union(G1, G2)
            assert_false(planarity.is_planar(G))
Пример #12
0
def graphFactoryPlanar(nb_graph, size_graph, graphtype, section='all'):
    cpt = 0
    while cpt <= nb_graph:
        m = np.random.random_sample(1)
        G = nx.gnm_random_graph(size_graph,edgeForDensity(size_graph,m))
        if graphToCSV(G,graphtype,section,pl.is_planar(G)):
            cpt+=1
            if cpt%10 == 0:
                print(str(cpt)+'/'+str(nb_graph)+' '+str(100*cpt/nb_graph)+'%')
Пример #13
0
def graphFactoryPlanarNormalDistribution(nb_graph,size_graph,graphtype,location,spread,section='all'):
    cpt=0
    while cpt <= nb_graph:
        rdm_density = np.random.normal(location,spread)
        G = nx.gnm_random_graph(size_graph,edgeForDensity(size_graph,rdm_density))
        if graphToCSV(G,graphtype,section,pl.is_planar(G)):
            cpt+=1
            if cpt%10 == 0:
                print(str(cpt)+'/'+str(nb_graph)+' '+str(100*cpt/nb_graph)+'%')
Пример #14
0
def get_network_PMFG(corr_matrix):
    """
    This function creates a filtered network starting from a correlation matrix using PMFG algorithm
        :param corr_matrix (numpy 2D-array)
        :return: returns filtered network (networkx Graph)
    """

    # get the list of links in decreasing order of weight
    rholist = []
    n = len(corr_matrix)
    for i in range(n):
        for j in range(n):
            if i > j:  # matrix is symmetric
                if corr_matrix[i][j] != 0:
                    rholist.append([abs(float(corr_matrix[i, j])), i,
                                    j])  # weight, node1, node2

    # sort the list in decreasing order
    rholist.sort(key=lambda x: x[0])
    rholist.reverse()

    # initialize filtered matrix
    m = len(rholist)
    filtered_matrix = np.zeros((n, n))
    control = 0

    # filtered graph
    G = nx.Graph()

    # get the filtered adjacency matrix using the PMFG algorithm
    # iterate over ordered edges
    for t in range(m):

        # stopping condition
        if control <= 3 * (n - 2) - 1:

            # get the current edge
            i = rholist[t][1]
            j = rholist[t][2]
            filtered_matrix[i, j] = rholist[t][0]

            # add the edge to the Graph
            G.add_edge(int(i), int(j), weight=filtered_matrix[i, j])

            # if the obtained G is not planarity we remove the edge
            if planarity.is_planar(G) == False:

                # remove edge
                filtered_matrix[i, j] = 0
                control = control + 1
                G.remove_edge(int(i), int(j))

        else:
            break

    return filtered_matrix, G
Пример #15
0
 def test_goldner_harary(self):
     # goldner-harary graph
     # http://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
     # a maximal planar graph
     e= [(1,2 ),( 1,3 ),( 1,4 ),( 1,5 ),( 1,7 ),( 1,8 ),( 1,10 ),
         ( 1,11 ),( 2,3 ),( 2,4 ),( 2,6 ),( 2,7 ),( 2,9 ),( 2,10 ),
         ( 2,11 ),( 3,4 ),( 4,5 ),( 4,6 ),( 4,7 ),( 5,7 ),( 6,7 ),
         ( 7,8 ),( 7,9 ),( 7,10 ),( 8,10 ),( 9,10 ),( 10,11)]
     G=nx.Graph(e)
     assert_true(planarity.is_planar(G))
Пример #16
0
 def test_goldner_harary(self):
     # goldner-harary graph
     # http://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
     # a maximal planar graph
     e = [(1, 2), (1, 3), (1, 4), (1, 5), (1, 7), (1, 8), (1, 10), (1, 11),
          (2, 3), (2, 4), (2, 6), (2, 7), (2, 9), (2, 10), (2, 11), (3, 4),
          (4, 5), (4, 6), (4, 7), (5, 7), (6, 7), (7, 8), (7, 9), (7, 10),
          (8, 10), (9, 10), (10, 11)]
     G = nx.Graph(e)
     assert_true(planarity.is_planar(G))
Пример #17
0
def compute_PMFG(sorted_edges, nb_nodes):
    PMFG = nx.Graph()
    for edge in sorted_edges:
        PMFG.add_edge(edge[0], edge[1], metric=edge[2])
        if not planarity.is_planar(PMFG):
            PMFG.remove_edge(edge[0], edge[1])

        if len(PMFG.edges()) == 3 * (nb_nodes - 2):
            break

    return PMFG
def compute_PMFG(sorted_edges, nb_nodes):
    PMFG = nx.Graph()
    for edge in sorted_edges:
        PMFG.add_edge(edge['source'], edge['dest'])
        if not planarity.is_planar(PMFG):
            PMFG.remove_edge(edge['source'], edge['dest'])

        if len(PMFG.edges()) == 3 * (nb_nodes - 2):
            break

    return PMFG
Пример #19
0
    def is_planar(self):
        """Verify that the graph has a planar embedding.

        Returns
        -------
        bool
        """
        if compas.IPY:
            from compas.rpc import Proxy
            planarity = Proxy('planarity')
        else:
            import planarity
        return planarity.is_planar(list(self.edges()))
def construct_pmfg(df_corr_matrix):
    df_distance = compute_distance(df_corr_matrix)
    dist_matrix = df_distance.values
    index_upper_triangular = np.triu_indices(dist_matrix.shape[0], 1)
    isort = np.argsort(dist_matrix[index_upper_triangular])
    G = nx.Graph()
    for k in range(len(isort)):
        u = index_upper_triangular[0][isort[k]]
        v = index_upper_triangular[1][isort[k]]
        if dist_matrix[u, v] > .0:  # remove perfect correlation because of diagonal FIXME
            G.add_edge(u, v, {'weight': float(dist_matrix[u, v])})
            if not planarity.is_planar(G):
                G.remove_edge(u, v)
    return G
def construct_pmfg(df_corr_matrix):
    # TW: Is this required? What's the difference to graph.algos.construct_pmfg?
    df_distance = np.sqrt( 2 * np.clip( 1. - df_corr_matrix, 0., 2.) ) 
    dist_matrix = df_distance.values
    index_upper_triangular = np.triu_indices(dist_matrix.shape[0],1)
    isort = np.argsort( dist_matrix[index_upper_triangular] )
    G = nx.Graph()
    for k in xrange(0,len(isort)):
        u = index_upper_triangular[0][isort[k]]
        v = index_upper_triangular[1][isort[k]]
        if dist_matrix[u,v] > 0: # remove perfect correlation because of diagonal FIXME
            G.add_edge(u, v, {'weight': float(dist_matrix[u,v])})
            if not planarity.is_planar(G):
                G.remove_edge(u,v)
    return G
def brute_force_thickness(g):
    smallest_thickness = 500
    for thickness_guess in range(2, 4):
        for edge_arrangement in algorithm_u(g.edges(), thickness_guess):
            all_planar = True
            for layer in edge_arrangement:
                if not is_planar(_from_edge_list(layer)):
                    all_planar = False
                    break
            if all_planar and len(edge_arrangement) < smallest_thickness:
                smallest_thickness = len(edge_arrangement)
                break
        if smallest_thickness <= thickness_guess:
            break
    return smallest_thickness
Пример #23
0
def check_planar(dataset):
    with open("generated_smiles_%s" % dataset, 'rb') as f:
        all_smiles = set(pickle.load(f))
    total_non_planar = 0
    for smiles in all_smiles:
        try:
            nodes, edges = to_graph(smiles, dataset)
        except:
            continue
        edges = [(src, dst) for src, e, dst in edges]
        if edges == []:
            continue

        if not planarity.is_planar(edges):
            total_non_planar += 1
    return len(all_smiles), total_non_planar
def simplify_using_PMFG(corr_matrix):

    #get the list of decreasing weighted links
    rholist = []
    n = len(corr_matrix)
    for i in range(n):
        for j in range(n):
            if i < j:
                if corr_matrix[i][j] != 0:
                    rholist.append([abs(float(corr_matrix[i][j])), i, j])

    rholist.sort(key=lambda x: x[0])
    rholist.reverse()

    m = len(rholist)
    filtered_matr = np.zeros((n, n))
    control = 0

    with progressbar.ProgressBar(max_value=m) as bar:
        #get the filtered adjacency matrix using PMFG algorithm
        for t in range(m):
            if control <= 3 * (n - 2) - 1:
                i = rholist[t][1]
                j = rholist[t][2]
                filtered_matr[i][j] = rholist[t][0]

                #check planarity here
                G = nx.Graph()
                for i in range(0, n):
                    for j in range(0, n):
                        if filtered_matr[i][j] != 0:
                            G.add_edge(int(i),
                                       int(j),
                                       weight=filtered_matr[i][j])
                if planarity.is_planar(G) == False:
                    filtered_matr[i][j] = 0
                    control = control + 1
            bar.update(t)

    #build the network
    PMFG = nx.Graph()
    for i in range(0, n):
        for j in range(0, n):
            if filtered_matr[i][j] != 0:
                PMFG.add_edge(int(i), int(j), weight=filtered_matr[i][j])

    return PMFG
def construct_pmfg(df_corr_matrix):
    # TW: Is this required? What's the difference to graph.algos.construct_pmfg?
    df_distance = np.sqrt(2 * np.clip(1. - df_corr_matrix, 0., 2.))
    dist_matrix = df_distance.values
    index_upper_triangular = np.triu_indices(dist_matrix.shape[0], 1)
    isort = np.argsort(dist_matrix[index_upper_triangular])
    G = nx.Graph()
    for k in xrange(0, len(isort)):
        u = index_upper_triangular[0][isort[k]]
        v = index_upper_triangular[1][isort[k]]
        if dist_matrix[
                u,
                v] > 0:  # remove perfect correlation because of diagonal FIXME
            G.add_edge(u, v, {'weight': float(dist_matrix[u, v])})
            if not planarity.is_planar(G):
                G.remove_edge(u, v)
    return G
Пример #26
0
def is_planar(location, adj_list, is_dense=False):
    if is_dense:
        new_adj_list = defaultdict(list)
        for x in range(len(adj_list)):
            for y in range(len(adj_list)):
                if adj_list[x][y] == 1:
                    new_adj_list[x].append((y, 1))
        adj_list = new_adj_list
    edges = []
    seen = set()
    for src, l in adj_list.items():
        for dst, e in l:
            if (dst, src) not in seen:
                edges.append((src, dst))
                seen.add((src, dst))
    edges += [location, (location[1], location[0])]
    return planarity.is_planar(edges)
Пример #27
0
def network_is_planar(network):
    """Check if the network is planar.

    Parameters
    ----------
    network : Network
        A network object.

    Returns
    -------
    bool
        True if the network is planar.
        False otherwise.

    Raises
    ------
    ImportError
        If the planarity package is not installed.

    Notes
    -----
    A network is planar if it can be drawn in the plane without crossing edges.
    If a network is planar, it can be shown that an embedding of the network in
    the plane exists, and, furthermore, that straight-line embedding in the plane
    exists.

    Warnings
    --------
    This function uses the python binding of the *edge addition planarity suite*.
    It is available on Anaconda: https://anaconda.org/conda-forge/python-planarity.

    Examples
    --------
    >>>
    """
    try:
        import planarity
    except ImportError:
        print("Planarity is not installed.")
        raise

    return planarity.is_planar(list(network.edges()))
def compute_PMFG(sorted_edges, nb_nodes):
    # remove weakest links
    '''
    References
    Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10421-10426.
    https://gmarti.gitlab.io/networks/2018/06/03/pmfg-algorithm.html
    https://github.com/hagberg/planarity
    http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
    https://networkx.github.io/documentation/stable/index.html
    '''
    PMFG = nx.Graph()
    for edge in sorted_edges:
        PMFG.add_edge(edge['source'], edge['dest'], weight=edge['weight'])
        if not planarity.is_planar(PMFG):
            PMFG.remove_edge(edge['source'], edge['dest'])

        if len(PMFG.edges()) == 3 * (nb_nodes - 2):
            break

    return PMFG
def compute_PMFG(G):
    PMFG = nx.Graph()  # initialize
    ne_total = G.number_of_edges()
    nb_nodes = len(G.nodes)
    ne_pmfg = 3 * (nb_nodes - 2)
    sorted_edges = sort_graph_edges_corr(G)
    t0 = time.time()
    for i, edge in enumerate(sorted_edges):
        PMFG.add_edge(edge['source'], edge['dest'], weight=edge['weight'])
        if not planarity.is_planar(PMFG):
            PMFG.remove_edge(edge['source'], edge['dest'])
        ne = PMFG.number_of_edges()
        print(
            "Generating PMFG... added edges in PMFG %d/%d (%.2f%%) lookup edges in G %d/%d (%.2f%%) Elapsed TIme %.2f [sec]"
            % (ne, ne_pmfg, (ne / ne_pmfg) * 100, i, ne_total,
               (i + 1 / ne_total) * 100, time.time() - t0),
            end="\r")
        if ne == ne_pmfg:
            break
    return PMFG
Пример #30
0
def exportRandomGraph(name, path=''):
    G = nx.newman_watts_strogatz_graph(6,2,0.5)
    nx.draw(G)
    plt.savefig('img_rdm_generate_graph_'+name+'.png')
    plt.clf()
    print(pl.is_planar(G))
Пример #31
0
 def test_is_planar(self):
     for G in self.planar:
         assert_true(planarity.is_planar(G))
     for G in self.non_planar:
         assert_false(planarity.is_planar(G))
Пример #32
0
import planarity
import networkx as nx
# Example of the complete graph of 5 nodes, K5
G=nx.complete_graph(5)
# K5 is not planar
print(planarity.is_planar(G)) # False
# find forbidden Kuratowski subgraph
K=planarity.kuratowski_subgraph(G)
print(K.edges()) # K5 edges

Пример #33
0
def is_planar(edge_list):
    return planarity.is_planar(edge_list)
Пример #34
0
import planarity

n = 6
m = n * (n - 1) / 2

out = "1"

for x in xrange(1, pow(2, m)):
    edgelist = []
    u, v = 1, 1
    for y in xrange(m):
        u += 1
        if u >= v:
            v += 1
            u = 1
        if x & (1<<(m-y-1)):
            edgelist.append((u, v))
    out += "1" if planarity.is_planar(edgelist) else "0"

print(out)
Пример #35
0
import planarity
# Example of the complete graph of 5 nodes, K5
# K5 is not planar

# use text strings as labels
edgelist = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('a', 'e'),
            ('b', 'c'),('b', 'd'),('b', 'e'),
            ('c', 'd'), ('c', 'e'),
            ('d', 'e')]

print planarity.is_planar(edgelist)  # False
# print forbidden Kuratowski subgraph (K5)
print planarity.kuratowski_edges(edgelist)

# remove an edge
edgelist.remove(('a','b'))
# graph is now planar
print planarity.is_planar(edgelist)  # True
# no forbidden subgraph, empty list returned
print planarity.kuratowski_edges(edgelist)
Пример #36
0
 def test_is_planar(self):
     for G in self.planar:
         assert_true(planarity.is_planar(G))
     for G in self.non_planar:
         assert_false(planarity.is_planar(G))
Пример #37
0
import planarity

edgelist = [
            ('a', 'b'), ('a', 'c'), ('a', 'd'), ('a', 'e'),
            ('b', 'c'),('b', 'd'),('b', 'e'),
            ('c', 'd'), ('c', 'e'),
            ('d', 'e')
]



print(planarity.is_planar(edgelist))

            nx.write_adjlist(new_G, output_path_adj)
    if write_graph:
        if verbose:
            print('Saving graph: %s' % output_path)
        sys.stdout.flush()
        graphutils.write_graph(new_G, output_path)
    image_path = output_path + '.pdf'
    stderr_path = output_path + '.err.txt'

    if init_options['compare_replica']:
        if verbose:
            print('Generator Report')
        print('Comparing replica')
        sys.stdout.flush()
        graphutils.compare_nets(G, new_G, params=params)
        print(planarity.is_planar(new_G.edges()))
        pos = nx.graphviz_layout(new_G)
        nx.draw(new_G, pos, with_labels=False, node_size=1)
        plt.show()
        benchmarks.find_differences(G, new_G)

    #0.03 is too small for Linux
    #sfdp_default_cmd = 'sfdp -Goverlap="prism100" -Goverlap_scaling=-100 -Nlabel="" -Nwidth=0.01 -Nfixedsize=true -Nheight=0.01'
    sfdp_default_cmd = 'sfdp -Nlabel="" -Nwidth=0.06 -Nfixedsize=true -Nheight=0.06 -Nstyle=filled'
    if write_graph and visualizer == 'sfdp' and output_path[-3:] == 'dot':
        visualizer_cmdl = sfdp_default_cmd + ' -Tpdf %s > %s 2> %s ' % (
            output_path, image_path, stderr_path)
        if verbose:
            print('Writing graph image: %s ..' % image_path)
        sys.stdout.flush()
        retCode = os.system(visualizer_cmdl)
Пример #39
0

if __name__ == '__main__':
    arguments = docopt(__doc__)
    M = int(arguments['M'])
    N = int(arguments['N'])
    output = arguments['OUTPUT']
    # G = nx.complete_multipartite_graph(M, N)
    # G = nx.complete_graph(M)
    G = nx.gnm_random_graph(M, N)

    if planarity_test.is_planar(G):
        print("Graph is planar")
        try:
            draw(G, output)
            print("Planar graph drawn!")
        except:
            print("Could not draw a planar graph...")
            nx.draw_random(G)
            plt.axis('off')
            plt.savefig(output)
    else:
        if planarity.is_planar(G):
            draw(G, output)
            print("Graph is unexpectedly planar...")
        else:
            nx.draw_random(G)
            plt.axis('off')
            plt.savefig(output)
            print("Graph is not planar!")
Пример #40
0
def exportGraph(G, name, path=''):
    nx.draw(G)
    plt.savefig('img_'+name+'.png')
    plt.clf()
    print(pl.is_planar(G))
Пример #41
0
def network_is_planar(network):
    """Check if the network is planar.

    Parameters
    ----------
    network : Network
        A network object.

    Returns
    -------
    bool
        True if the network is planar.
        False otherwise.

    Raises
    ------
    ImportError
        If the planarity package is not installed.

    Notes
    -----
    A network is planar if it can be drawn in the plane without crossing edges.
    If a network is planar, it can be shown that an embedding of the network in
    the plane exists, and, furthermore, that straight-line embedding in the plane
    exists.

    Warning
    -------
    This function uses the python binding of the *edge addition planarity suite*.
    It is available on GitHub: https://github.com/hagberg/planarity.

    Examples
    --------

    .. plot::
        :include-source:

        import compas

        from compas.datastructures import Network
        from compas.topology import network_is_planar
        from compas.topology import network_find_crossings
        from compas.plotters import NetworkPlotter

        network = Network.from_obj(compas.get('lines.obj'))

        network.add_edge(21, 29)
        network.add_edge(17, 28)

        if not network_is_planar(network):
            crossings = network_find_crossings(network)
        else:
            crossings = []

        plotter = NetworkPlotter(network)

        plotter.draw_vertices(radius=0.15, text={key: key for key in network.vertices()})
        plotter.draw_edges(color={edge: '#ff0000' for edges in crossings for edge in edges})

        plotter.show()

    """
    try:
        import planarity
    except ImportError:
        print(
            "Planarity is not installed. Get Planarity at https://github.com/hagberg/planarity."
        )
        raise
    return planarity.is_planar(network.edges())
Пример #42
0
# K5 is not planar
# any of the following formats can bed used for representing the graph

edgelist = [(0, 1), (0, 2), (0, 3), (0, 4),
            (1, 2),(1, 3),(1, 4),
            (2, 3), (2, 4),
            (3, 4)]

dictofdicts = {0: {1: {}, 2: {}, 3: {}, 4: {}},
               1: {2: {}, 3: {}, 4: {}},
               2: {3: {}, 4: {}},
               3: {4: {}},
               4: {}}

dictofsets = {0: set([1,2,3,4]),
              1: set([2,3,4]),
              2: set([3,4]),
              3: set([4]),
              4: set([])}

dictoflists = {0: list([1,2,3,4]),
               1: list([2,3,4]),
               2: list([3,4]),
               3: list([4]),
               4: list([])}

print planarity.is_planar(edgelist)  # False
print planarity.is_planar(dictofdicts) # False
print planarity.is_planar(dictofsets) # False
print planarity.is_planar(dictoflists) # False
Пример #43
0
 def test_is_planar_adj_input_function(self):
     assert_false(planarity.is_planar(self.k5_adj))
Пример #44
0
def network_is_planar(network):
    """Check if the network is planar.

    Parameters
    ----------
    network : Network
        A network object.

    Returns
    -------
    bool
        True if the network is planar.
        False otherwise.

    Raises
    ------
    ImportError
        If the planarity package is not installed.

    Notes
    -----
    A network is planar if it can be drawn in the plane without crossing edges.
    If a network is planar, it can be shown that an embedding of the network in
    the plane exists, and, furthermore, that straight-line embedding in the plane
    exists.

    Warning
    -------
    This function uses the python binding of the *edge addition planarity suite*.
    It is available on Anaconda: https://anaconda.org/conda-forge/python-planarity.

    Examples
    --------
    .. plot::
        :include-source:

        import compas

        from compas.datastructures import Network
        from compas.datastructures import network_is_planar
        from compas.datastructures import network_find_crossings
        from compas_plotters import NetworkPlotter

        network = Network.from_obj(compas.get('lines.obj'))

        network.add_edge(6, 15)

        if not network_is_planar(network):
            print('here')
            crossings = network_find_crossings(network)
        else:
            crossings = []

        print(crossings)

        plotter = NetworkPlotter(network)

        plotter.draw_vertices(radius=0.15, text={key: key for key in network.vertices()})
        plotter.draw_edges(color={edge: '#ff0000' for edges in crossings for edge in edges})

        plotter.show()

    """
    return planarity.is_planar(list(network.edges()))
Пример #45
0
import planarity
import networkx as nx
G8 = nx.complete_graph(8)
G8.nodes
G8.edges
planarity.is_planar(G8)
K = planarity.kuratowski_subgraph(G8)
K.edges
K.nodes
nx.draw(G8)
Пример #46
0
 def test_is_planar_edgelist_input_function(self):
     assert_false(planarity.is_planar(self.k5_edgelist))