Пример #1
0
    def train(self, weights_path=None, callbacks=[]):

        # Network setup. ResNet layers frozen at first.
        net, self.cfg['preprocess_imgs_func'] = self.cfg['net_builder_func'](self.cfg['input_shape'])
        json.dump(net.to_json(), open('%s/model.json' % self.cpdir, 'w'), indent=2)
        json.dump(serialize_config(self.cfg), open('%s/config.json' % self.cpdir, 'w'))

        data_trn = h5py.File(self.cfg['hdf5_path_trn'])
        data_tst = h5py.File(self.cfg['hdf5_path_tst'])
        nb_examples = len(data_trn.get('images')) + len(data_tst.get('images'))
        steps_trn = math.ceil(nb_examples / self.cfg['trn_batch_size'])

        steps_trn = 100
        gen_trn = self.batch_gen(steps_trn)

        opt = self.cfg['trn_optimizer'](**self.cfg['trn_optimizer_args'])
        net.compile(optimizer=opt, loss=self.cfg['net_loss_func'])

        net.summary()
        if weights_path is not None:
            net.load_weights(weights_path)
        pprint(self.cfg)

        cb = [
            ExamplesCB(self.cfg['cpdir'], gen_trn),
            HistoryPlotCB('%s/history.png' % self.cpdir),
            EarlyStopping(monitor='loss', min_delta=0.01, patience=20, verbose=1, mode='max'),
            CSVLogger('%s/history.csv' % self.cpdir),
            ModelCheckpoint('%s/wloss.hdf5' % self.cpdir, monitor='val_F2', verbose=1,
                            save_best_only=True, mode='max'),
            TerminateOnNaN()
        ]

        train = net.fit_generator(gen_trn, steps_per_epoch=steps_trn, epochs=self.cfg['trn_epochs'],
                                  verbose=1, callbacks=cb)

        return train.history
Пример #2
0
    def train(self, weights_path=None, callbacks=[]):

        # Metrics.
        def prec(yt, yp):
            yp = K.cast(yp > self.cfg['net_threshold'], 'float')
            tp = K.sum(yt * yp)
            fp = K.sum(K.clip(yp - yt, 0, 1))
            return tp / (tp + fp + K.epsilon())

        def reca(yt, yp):
            yp = K.cast(yp > self.cfg['net_threshold'], 'float')
            tp = K.sum(yt * yp)
            fn = K.sum(K.clip(yt - yp, 0, 1))
            return tp / (tp + fn + K.epsilon())

        def F2(yt, yp):
            p = prec(yt, yp)
            r = reca(yt, yp)
            b = 2.0
            return (1 + b**2) * ((p * r) / (b**2 * p + r + K.epsilon()))

        # Network setup. ResNet layers frozen at first.
        net, self.cfg['preprocess_imgs_func'], self.cfg['preprocess_tags_func'] = \
            self.cfg['net_builder_func'](self.cfg['input_shape'])
        json.dump(net.to_json(),
                  open('%s/model.json' % self.cpdir, 'w'),
                  indent=2)
        json.dump(serialize_config(self.cfg),
                  open('%s/config.json' % self.cpdir, 'w'))

        # Data setup.
        idxs_trn, idxs_val = get_train_val_idxs(self.cfg['hdf5_path_trn'],
                                                self.cfg['trn_prop_data'],
                                                self.cfg['trn_prop_trn'])
        steps_trn = math.ceil(len(idxs_trn) / self.cfg['trn_batch_size'])
        steps_val = math.ceil(len(idxs_val) / self.cfg['trn_batch_size'])
        gen_trn = self.batch_gen(
            idxs_trn,
            steps_trn,
            nb_augment_max=self.cfg['trn_augment_max_trn'])
        gen_val = self.batch_gen(
            idxs_val,
            steps_val,
            nb_augment_max=self.cfg['trn_augment_max_val'])

        opt = self.cfg['trn_optimizer'](**self.cfg['trn_optimizer_args'])
        net.compile(optimizer=opt,
                    loss=self.cfg['net_loss_func'],
                    metrics=[F2, prec, reca])

        net.summary()
        if weights_path is not None:
            net.load_weights(weights_path)
        pprint(self.cfg)

        cb = [
            # FineTuneCB(unfreeze_after=2, unfreeze_lr_mult=0.1),
            HistoryPlotCB('%s/history.png' % self.cpdir),
            EarlyStopping(monitor='F2',
                          min_delta=0.01,
                          patience=20,
                          verbose=1,
                          mode='max'),
            CSVLogger('%s/history.csv' % self.cpdir),
            ModelCheckpoint('%s/wvalf2.hdf5' % self.cpdir,
                            monitor='val_F2',
                            verbose=1,
                            save_best_only=True,
                            mode='max'),
            TerminateOnNaN(),
        ] + callbacks

        if self.cfg['trn_monitor_val']:
            cb.append(
                ReduceLROnPlateau(monitor='val_F2',
                                  factor=0.5,
                                  patience=5,
                                  min_lr=1e-4,
                                  epsilon=1e-2,
                                  verbose=1,
                                  mode='max'))
            cb.append(
                EarlyStopping(monitor='val_F2',
                              min_delta=0.01,
                              patience=20,
                              verbose=1,
                              mode='max'))

        train = net.fit_generator(gen_trn,
                                  steps_per_epoch=steps_trn,
                                  epochs=self.cfg['trn_epochs'],
                                  verbose=1,
                                  callbacks=cb,
                                  validation_data=gen_val,
                                  validation_steps=steps_val,
                                  workers=1)

        return train.history
Пример #3
0
 def serialize(self):
     self.net.save('%s/model.hdf5' % self.cpdir)
     json.dump(serialize_config(self.cfg), open('%s/config.json' % self.cpdir, 'w'))