def create_majority_step_swarm(): swarm = StepSwarm( model=lambda x: DiscreteUniform(env=x), env=lambda: ParallelEnvironment(lambda: DiscreteEnv(ClassicControl())), reward_limit=10, n_walkers=100, max_epochs=20, step_epochs=25, ) return swarm
def create_step_to_best(): swarm = StepToBest( model=lambda x: DiscreteUniform(env=x), env=lambda: ParallelEnvironment(lambda: DiscreteEnv(ClassicControl())), reward_limit=16, n_walkers=100, max_epochs=5, step_epochs=25, ) return swarm
def create_cartpole_swarm(): swarm = Swarm( model=lambda x: DiscreteUniform(env=x), walkers=Walkers, env=lambda: DiscreteEnv(ClassicControl()), n_walkers=20, max_iters=200, prune_tree=True, reward_scale=2, ) return swarm
def create_cartpole_swarm(): swarm = Swarm( model=lambda x: DiscreteUniform(env=x), walkers=Walkers, env=lambda: DiscreteEnv(ClassicControl()), reward_limit=121, n_walkers=150, max_epochs=300, reward_scale=2, ) return swarm
def create_follow_best_step_swarm(): swarm = StepSwarm( root_model=FollowBestModel, model=lambda x: DiscreteUniform(env=x), env=lambda: ParallelEnvironment(lambda: DiscreteEnv(ClassicControl())), reward_limit=15, n_walkers=100, max_epochs=15, step_epochs=25, ) return swarm
def swarm_with_tree(): swarm = Swarm( model=lambda x: DiscreteUniform(env=x), env=lambda: DiscreteEnv(ClassicControl()), reward_limit=200, n_walkers=150, max_epochs=300, reward_scale=2, tree=HistoryTree, prune_tree=True, ) return swarm
def create_cartpole_swarm(): from fragile.core import DiscreteEnv, DiscreteUniform, Swarm from plangym.minimal import ClassicControl swarm = Swarm( model=lambda x: DiscreteUniform(env=x), env=lambda: DiscreteEnv(ClassicControl()), reward_limit=51, n_walkers=50, max_epochs=100, reward_scale=2, ) return swarm