def run_benchmark(database_folders=[], num_envs=1):
    global env_params, lattice_params, cost_fn, heuristic_fn, lattice, planner, start_n, goal_n

    # h_weight_list = range(1, 100, 10)
    # h_weight_list = [0] + h_weight_list
    h_weight_list = [0]
    e = Env2D()
    print('Running benchmark')

    for folder in database_folders:
        results = defaultdict(list)

        for i in range(num_envs):
            curr_env_file = os.path.join(os.path.abspath(folder),
                                         str(i) + '.png')
            e.initialize(curr_env_file, env_params)

            for h_weight in h_weight_list:
                prob_params = {'heuristic_weight': h_weight}
                prob = PlanningProblem(prob_params)
                prob.initialize(e,
                                lattice,
                                cost_fn,
                                heuristic_fn,
                                start_n,
                                goal_n,
                                visualize=True)
                planner.initialize(prob)
                path, path_cost, num_expansions, plan_time, came_from, cost_so_far, c_obs = planner.plan(
                )
                results[h_weight].append((num_expansions, plan_time))
                planner.clear_planner()  #clear the planner in the end

        env_name = os.path.split(os.path.split(os.path.abspath(folder))[0])[1]
        output_file_1 = "astar_2d_benchmark.json"
        json.dump(results,
                  open(
                      os.path.join(
                          os.path.abspath("../benchmark_results/astar/" +
                                          env_name), output_file_1), 'w'),
                  sort_keys=True)
        output_file_2 = "astar_2d_enchmark_averaged.json"

        #Calculate average expansions
        avg_results = defaultdict(list)
        for k, v in results.iteritems():
            avg_expansions = 0
            avg_time = 0
            for exp, t in v:
                avg_expansions += exp
                avg_time += t
            avg_expansions /= num_envs
            avg_time /= num_envs
            avg_results[k] = (avg_expansions, avg_time)
        json.dump(avg_results,
                  open(
                      os.path.join(
                          os.path.abspath("../benchmark_results/astar/" +
                                          env_name), output_file_2), 'w'),
                  sort_keys=True)
Пример #2
0
lattice_params['connectivity']    = 'eight_connected' #Lattice connectivity (can be four or eight connected for xylattice)
lattice_params['path_resolution'] = 1         #Resolution for defining edges and doing collision checking (in meters)

l = XYAnalyticLattice(lattice_params)

#Step 4: Create cost and heuristic objects
cost_fn = PathLengthNoAng()                        #Penalize length of path
heuristic_fn = EuclideanHeuristicNoAng()      

#(Additionally, you can precalculate edges and costs on lattice for speed-ups)
l.precalc_costs(cost_fn)						#useful when lattice remains same across problems
#Step 5: Create a planning problem
prob_params = {'heuristic_weight': 1.0}        
start_n = l.state_to_node(start)
goal_n = l.state_to_node(goal)
prob = PlanningProblem(prob_params)
prob.initialize(e, l, cost_fn, heuristic_fn, start_n, goal_n, visualize=visualize)

#Step 6: Create Planner object and ask it to solve the planning problem
planner = GreedyPlanner()
planner.initialize(prob)
path, path_cost, num_expansions, plan_time, came_from, cost_so_far, c_obs = planner.plan()


print('Path: ', path)
print('Path Cost: ', path_cost)
print('Number of Expansions: ', num_expansions)
print('Time taken: ', plan_time)

e.initialize_plot(start, goal)
e.plot_path(path, 'solid', 'red', 3)
Пример #3
0
    'origin'] = start  # Used for conversion from discrete to continuous and vice-versa.
lattice_params['rotation'] = 0  # Can rotate lattice with respect to world
lattice_params[
    'connectivity'] = 'eight_connected'  #Lattice connectivity (can be four or eight connected for xylattice)
lattice_params[
    'path_resolution'] = 1  #Resolution for defining edges and doing collision checking (in meters)
lattice = XYAnalyticLattice(lattice_params)

# lattice.precalc_costs(cost_fn) #Precalculate costs for speedups
planner = ValueIteration()
start_n = lattice.state_to_node(start)
goal_n = lattice.state_to_node(goal)
prob_params = {
    'heuristic_weight': 0.0
}  #doesn't matter as    VI will ignore them
prob = PlanningProblem(prob_params)


def get_json_dict(d):
    new_d = dict()
    for key, v in d.items():
        n_k = str(key)
        new_d[n_k] = v
    return new_d


def generate_oracles(database_folders=[],
                     num_envs=1,
                     file_start_num=0,
                     file_type='json'):
    global env_params, lattice_params, cost_fn, heuristic_fn, lattice, planner, start_n, goal_n, prob
Пример #4
0
lattice_params['origin']          = (0, 0)   # Used for conversion from discrete to continuous and vice-versa. 
lattice_params['rotation']        = 0        # Used for conversion from discrete to continuous and vice-versa (This plus origin define lattice-->world transform)
lattice_params['connectivity']    = 'eight_connected' #Lattice connectivity (can be four or eight connected for xylattice)
lattice_params['path_resolution'] = 1      #Resolution for defining edges and doing collision checking (in meters)

l = XYAnalyticLattice(lattice_params)

#Step 3: Create cost and heuristic objects
cost_fn = PathLengthNoAng()                   #Penalize length of path
heuristic_fn = EuclideanHeuristicNoAng()      

#Step 4: Create a planning problem
prob_params = {'heuristic_weight': 1}        #Planner is not greedy at all
start_n = l.state_to_node((0,0))
goal_n = l.state_to_node((100, 100))
prob = PlanningProblem(e, l, cost_fn, heuristic_fn, prob_params, start_n, goal_n, visualize=True)

#Step 4: Create Planner object and ask it to solve the planning problem
planner = Astar(prob)
plan_start_time = time.time()
path, path_cost, num_expansions, came_from, cost_so_far, c_obs = planner.plan()
planning_time = time.time() - plan_start_time
print('Path: ', path)
print('Path Cost: ', path_cost)
print('Number of Expansions: ', num_expansions)
print('Time taken: ', planning_time)

plt.show()