Пример #1
0
def prune(skel_img, size):
    """
    The pruning algorithm was inspired by Jean-Patrick Pommier: https://gist.github.com/jeanpat/5712699
    Iteratively remove endpoints (tips) from a skeletonized image. "Prunes" barbs off a skeleton.

    Inputs:
    skel_img    = Skeletonized image
    size        = Size to get pruned off each branch

    Returns:
    pruned_img  = Pruned image

    :param skel_img: numpy.ndarray
    :param size: int
    :return pruned_img: numpy.ndarray

    """
    # Store debug
    debug = params.debug
    params.debug = None

    pruned_img = skel_img.copy()

    # Check to see if the skeleton has multiple objects
    objects, _ = find_objects(pruned_img, pruned_img)
    if not len(objects) == 1:
        print("Warning: Multiple objects detected! Pruning will further separate the difference pieces.")

    # Iteratively remove endpoints (tips) from a skeleton
    for i in range(0, size):
        endpoints = find_tips(pruned_img)
        pruned_img = image_subtract(pruned_img, endpoints)

    # Make debugging image
    pruned_plot = np.zeros(skel_img.shape[:2], np.uint8)
    pruned_plot = cv2.cvtColor(pruned_plot, cv2.COLOR_GRAY2RGB)
    skel_obj, skel_hierarchy = find_objects(skel_img, skel_img)
    pruned_obj, pruned_hierarchy = find_objects(pruned_img, pruned_img)
    cv2.drawContours(pruned_plot, skel_obj, -1, (0, 0, 255), params.line_thickness,
                     lineType=8, hierarchy=skel_hierarchy)
    cv2.drawContours(pruned_plot, pruned_obj, -1, (255, 255, 255), params.line_thickness,
                     lineType=8, hierarchy=pruned_hierarchy)

    # Reset debug mode
    params.debug = debug

    params.device += 1

    if params.debug == 'print':
        print_image(pruned_img, os.path.join(params.debug_outdir, str(params.device) + '_pruned.png'))
        print_image(pruned_plot, os.path.join(params.debug_outdir, str(params.device) + '_pruned_debug.png'))

    elif params.debug == 'plot':
        plot_image(pruned_img, cmap='gray')
        plot_image(pruned_plot)

    return pruned_img
Пример #2
0
def segment_skeleton(skel_img, mask=None):
    """ Segment a skeleton image into pieces

        Inputs:
        skel_img      = Skeletonized image
        mask          = (Optional) binary mask for debugging. If provided, debug image will be overlaid on the mask.

        Returns:
        segmented_img = Segmented debugging image
        objects       = list of contours
        hierarchy     = contour hierarchy list

        :param skel_img: numpy.ndarray
        :param mask: numpy.ndarray
        :return segmented_img: numpy.ndarray
        :return segment_objects: list
        "return segment_hierarchies: numpy.ndarray
        """

    # Store debug
    debug = params.debug
    params.debug = None

    # Find branch points
    bp = find_branch_pts(skel_img)
    bp = dilate(bp, 3, 1)

    # Subtract from the skeleton so that leaves are no longer connected
    segments = image_subtract(skel_img, bp)

    # Gather contours of leaves
    segment_objects, _ = find_objects(segments, segments)

    # Color each segment a different color
    rand_color = color_palette(len(segment_objects))

    if mask is None:
        segmented_img = skel_img.copy()
    else:
        segmented_img = mask.copy()

    segmented_img = cv2.cvtColor(segmented_img, cv2.COLOR_GRAY2RGB)
    for i, cnt in enumerate(segment_objects):
        cv2.drawContours(segmented_img, segment_objects, i, rand_color[i], params.line_thickness, lineType=8)

    # Reset debug mode
    params.debug = debug
    # Auto-increment device
    params.device += 1

    if params.debug == 'print':
        print_image(segmented_img, os.path.join(params.debug_outdir, str(params.device) + '_segmented.png'))
    elif params.debug == 'plot':
        plot_image(segmented_img)

    return segmented_img, segment_objects
def _iterative_prune(skel_img, size):
    """
    The pruning algorithm was inspired by Jean-Patrick Pommier: https://gist.github.com/jeanpat/5712699
    Iteratively remove endpoints (tips) from a skeletonized image. "Prunes" barbs off a skeleton.
    Inputs:
    skel_img    = Skeletonized image
    size        = Size to get pruned off each branch
    Returns:
    pruned_img  = Pruned image
    :param skel_img: numpy.ndarray
    :param size: int
    :return pruned_img: numpy.ndarray
    """
    pruned_img = skel_img.copy()
    # Store debug
    debug = params.debug
    params.debug = None

    # Check to see if the skeleton has multiple objects
    objects, _ = find_objects(pruned_img, pruned_img)

    # Iteratively remove endpoints (tips) from a skeleton
    for i in range(0, size):
        endpoints = find_tips(pruned_img)
        pruned_img = image_subtract(pruned_img, endpoints)

    # Make debugging image
    pruned_plot = np.zeros(skel_img.shape[:2], np.uint8)
    pruned_plot = cv2.cvtColor(pruned_plot, cv2.COLOR_GRAY2RGB)
    skel_obj, skel_hierarchy = find_objects(skel_img, skel_img)
    pruned_obj, pruned_hierarchy = find_objects(pruned_img, pruned_img)

    # Reset debug mode
    params.debug = debug

    cv2.drawContours(pruned_plot,
                     skel_obj,
                     -1, (0, 0, 255),
                     params.line_thickness,
                     lineType=8,
                     hierarchy=skel_hierarchy)
    cv2.drawContours(pruned_plot,
                     pruned_obj,
                     -1, (255, 255, 255),
                     params.line_thickness,
                     lineType=8,
                     hierarchy=pruned_hierarchy)

    return pruned_img
Пример #4
0
def main():
    # Get options
    args = options()

    # Set variables
    device = 0
    pcv.params.debug = args.debug
    img_file = args.image

    # Read image
    img, path, filename = pcv.readimage(filename=img_file, mode='rgb')

    # Process saturation channel from HSV colour space
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    lp_s = pcv.laplace_filter(s, 1, 1)
    shrp_s = pcv.image_subtract(s, lp_s)
    s_eq = pcv.hist_equalization(shrp_s)
    s_thresh = pcv.threshold.binary(gray_img=s_eq,
                                    threshold=215,
                                    max_value=255,
                                    object_type='light')
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Process green-magenta channel from LAB colour space
    b = pcv.rgb2gray_lab(rgb_img=img, channel='a')
    b_lp = pcv.laplace_filter(b, 1, 1)
    b_shrp = pcv.image_subtract(b, b_lp)
    b_thresh = pcv.threshold.otsu(b_shrp, 255, object_type='dark')

    # Create and apply mask
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh)
    filled = pcv.fill_holes(bs)
    masked = pcv.apply_mask(img=img, mask=filled, mask_color='white')

    # Extract colour channels from masked image
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=140,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Produce and apply a mask
    opened_ab = pcv.opening(gray_img=ab)
    ab_fill = pcv.fill(bin_img=ab, size=200)
    closed_ab = pcv.closing(gray_img=ab_fill)
    masked2 = pcv.apply_mask(img=masked, mask=bs, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define region of interest (ROI)
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=250,
                                            y=100,
                                            h=200,
                                            w=200)

    # Decide what objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Analyze the plant
    analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')
    top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)
    top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)

    # Print results of the analysis
    pcv.print_results(filename=args.result)
    pcv.output_mask(img,
                    kept_mask,
                    filename,
                    outdir=args.outdir,
                    mask_only=True)
Пример #5
0
def segment_skeleton(skel_img, mask=None):
    """ Segment a skeleton image into pieces

        Inputs:
        skel_img         = Skeletonized image
        mask             = (Optional) binary mask for debugging. If provided, debug image will be overlaid on the mask.

        Returns:
        segmented_img       = Segmented debugging image
        segment_objects     = list of contours

        :param skel_img: numpy.ndarray
        :param mask: numpy.ndarray
        :return segmented_img: numpy.ndarray
        :return segment_objects: list
        """

    # Store debug
    debug = params.debug
    params.debug = None

    # Find branch points
    bp = find_branch_pts(skel_img)
    bp = dilate(bp, 3, 1)

    # Subtract from the skeleton so that leaves are no longer connected
    segments = image_subtract(skel_img, bp)

    # Gather contours of leaves
    segment_objects, _ = find_objects(segments, segments)

    # Reset debug mode
    params.debug = debug

    # Color each segment a different color, do not used a previously saved color scale
    rand_color = color_palette(num=len(segment_objects), saved=False)

    if mask is None:
        segmented_img = skel_img.copy()
    else:
        segmented_img = mask.copy()

    segmented_img = cv2.cvtColor(segmented_img, cv2.COLOR_GRAY2RGB)
    for i, cnt in enumerate(segment_objects):
        cv2.drawContours(segmented_img,
                         segment_objects,
                         i,
                         rand_color[i],
                         params.line_thickness,
                         lineType=8)

    # Auto-increment device
    params.device += 1

    if params.debug == 'print':
        print_image(
            segmented_img,
            os.path.join(params.debug_outdir,
                         str(params.device) + '_segmented.png'))
    elif params.debug == 'plot':
        plot_image(segmented_img)

    return segmented_img, segment_objects
def main():
    args = options()  #create options object for argument parsing
    device = 0  #set device
    params.debug = args.debug  #set debug

    outfile = False
    if args.writeimg:
        outfile = os.path.join(args.outdir, os.path.basename(args.image)[:-4])

    # In[114]:

    img, path, filename = pcv.readimage(filename=args.image,
                                        debug=args.debug)  #read in image
    background = pcv.transform.load_matrix(
        args.npz)  #read in background mask image for subtraction

    # In[115]:

    device, mask = pcv.naive_bayes_classifier(
        img, args.pdf, device, args.debug)  #naive bayes on image

    #if args.writeimg:
    #   pcv.print_image(img=mask["94,104,47"], filename=outfile + "_nb_mask.png")

    # In[116]:

    new_mask = pcv.image_subtract(mask["94,104,47"],
                                  background)  #subtract background noise

    # In[117]:

    #image blurring using scipy median filter
    blurred_img = ndimage.median_filter(new_mask, (7, 1))
    blurred_img = ndimage.median_filter(blurred_img, (1, 7))
    device, cleaned = pcv.fill(np.copy(blurred_img), np.copy(blurred_img), 50,
                               0, args.debug)  #fill leftover noise

    # In[118]:

    #dilate and erode to repair plant breaks from background subtraction
    device, cleaned_dilated = pcv.dilate(cleaned, 6, 1, 0)
    device, cleaned = pcv.erode(cleaned_dilated, 6, 1, 0, args.debug)

    # In[119]:

    device, objects, obj_hierarchy = pcv.find_objects(
        img, cleaned, device, debug=args.debug)  #find objects using mask
    if "TM015" in args.image:
        h = 1620
    elif "TM016" in args.image:
        h = 1555
    else:
        h = 1320
    roi_contour, roi_hierarchy = pcv.roi.rectangle(x=570,
                                                   y=0,
                                                   h=h,
                                                   w=1900 - 550,
                                                   img=img)  #grab ROI

    # In[120]:

    #isolate plant objects within ROI
    device, roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(
        img,
        'partial',
        roi_contour,
        roi_hierarchy,
        objects,
        obj_hierarchy,
        device,
        debug=args.debug)

    #Analyze only images with plants present.
    if roi_objects > 0:
        # In[121]:

        # Object combine kept objects
        device, plant_contour, plant_mask = pcv.object_composition(
            img=img,
            contours=roi_objects,
            hierarchy=hierarchy,
            device=device,
            debug=args.debug)

        if args.writeimg:
            pcv.print_image(img=plant_mask, filename=outfile + "_mask.png")

        # In[122]:

        # Find shape properties, output shape image (optional)
        device, shape_header, shape_data, shape_img = pcv.analyze_object(
            img=img,
            imgname=args.image,
            obj=plant_contour,
            mask=plant_mask,
            device=device,
            debug=args.debug,
            filename=outfile + ".png")

        # In[123]:

        if "TM015" in args.image:
            line_position = 380
        elif "TM016" in args.image:
            line_position = 440
        else:
            line_position = 690

        # Shape properties relative to user boundary line (optional)
        device, boundary_header, boundary_data, boundary_img = pcv.analyze_bound_horizontal(
            img=img,
            obj=plant_contour,
            mask=plant_mask,
            line_position=line_position,
            device=device,
            debug=args.debug,
            filename=outfile + ".png")

        # In[124]:

        # Determine color properties: Histograms, Color Slices and Pseudocolored Images,
        # output color analyzed images (optional)
        device, color_header, color_data, color_img = pcv.analyze_color(
            img=img,
            imgname=args.image,
            mask=plant_mask,
            bins=256,
            device=device,
            debug=args.debug,
            hist_plot_type=None,
            pseudo_channel="v",
            pseudo_bkg="img",
            resolution=300,
            filename=outfile + ".png")

        # In[55]:

        # Output shape and color data
        result = open(args.result, "a")
        result.write('\t'.join(map(str, shape_header)) + "\n")
        result.write('\t'.join(map(str, shape_data)) + "\n")
        for row in shape_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.write('\t'.join(map(str, color_header)) + "\n")
        result.write('\t'.join(map(str, color_data)) + "\n")
        result.write('\t'.join(map(str, boundary_header)) + "\n")
        result.write('\t'.join(map(str, boundary_data)) + "\n")
        result.write('\t'.join(map(str, boundary_img)) + "\n")
        for row in color_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.close()
Пример #7
0
def prune(skel_img, size=0, mask=None):
    """
    The pruning algorithm proposed by https://github.com/karnoldbio
    Segments a skeleton into discrete pieces, prunes off all segments less than or
    equal to user specified size. Returns the remaining objects as a list and the
    pruned skeleton.

    Inputs:
    skel_img    = Skeletonized image
    size        = Size to get pruned off each branch
    mask        = (Optional) binary mask for debugging. If provided, debug image will be overlaid on the mask.

    Returns:
    pruned_img      = Pruned image
    segmented_img   = Segmented debugging image
    segment_objects = List of contours

    :param skel_img: numpy.ndarray
    :param size: int
    :param mask: numpy.ndarray
    :return pruned_img: numpy.ndarray
    :return segmented_img: numpy.ndarray
    :return segment_objects: list

    """
    # Store debug
    debug = params.debug
    params.debug = None

    pruned_img = skel_img.copy()

    # Check to see if the skeleton has multiple objects
    skel_objects, _ = find_objects(skel_img, skel_img)

    _, objects = segment_skeleton(skel_img)
    kept_segments = []
    removed_segments = []

    if size > 0:
        # If size>0 then check for segments that are smaller than size pixels long

        # Sort through segments since we don't want to remove primary segments
        secondary_objects, primary_objects = segment_sort(skel_img, objects)

        # Keep segments longer than specified size
        for i in range(0, len(secondary_objects)):
            if len(secondary_objects[i]) > size:
                kept_segments.append(secondary_objects[i])
            else:
                removed_segments.append(secondary_objects[i])

        # Draw the contours that got removed
        removed_barbs = np.zeros(skel_img.shape[:2], np.uint8)
        cv2.drawContours(removed_barbs,
                         removed_segments,
                         -1,
                         255,
                         1,
                         lineType=8)

        # Subtract all short segments from the skeleton image
        pruned_img = image_subtract(pruned_img, removed_barbs)
        pruned_img = _iterative_prune(pruned_img, 1)

    # Reset debug mode
    params.debug = debug

    # Make debugging image
    if mask is None:
        pruned_plot = np.zeros(skel_img.shape[:2], np.uint8)
    else:
        pruned_plot = mask.copy()
    pruned_plot = cv2.cvtColor(pruned_plot, cv2.COLOR_GRAY2RGB)
    pruned_obj, pruned_hierarchy = find_objects(pruned_img, pruned_img)
    cv2.drawContours(pruned_plot,
                     removed_segments,
                     -1, (0, 0, 255),
                     params.line_thickness,
                     lineType=8)
    cv2.drawContours(pruned_plot,
                     pruned_obj,
                     -1, (150, 150, 150),
                     params.line_thickness,
                     lineType=8)

    # Auto-increment device
    params.device += 1

    if params.debug == 'print':
        print_image(
            pruned_img,
            os.path.join(params.debug_outdir,
                         str(params.device) + '_pruned.png'))
        print_image(
            pruned_plot,
            os.path.join(params.debug_outdir,
                         str(params.device) + '_pruned_debug.png'))

    elif params.debug == 'plot':
        plot_image(pruned_img, cmap='gray')
        plot_image(pruned_plot)

    # Segment the pruned skeleton
    segmented_img, segment_objects = segment_skeleton(pruned_img, mask)

    return pruned_img, segmented_img, segment_objects
def main_side():
    # Setting "args"

    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv'
    filename = args.image
    img = cv2.imread(args.image, flags=0)
    #img = pcv.invert(img)
    path, img_name = os.path.split(args.image)
    img_bkgrd = cv2.imread("background.png", flags=0)
    #print(img)
    #print(img_bkgrd)
    bkg_sub_img = pcv.image_subtract(img_bkgrd, img)
    bkg_sub_thres_img, masked_img = pcv.threshold.custom_range(
        rgb_img=bkg_sub_img,
        lower_thresh=[50],
        upper_thresh=[255],
        channel='gray')
    # Laplace filtering (identify edges based on 2nd derivative)

    # Inputs:
    #   gray_img - Grayscale image data
    #   ksize - Aperture size used to calculate the second derivative filter,
    #           specifies the size of the kernel (must be an odd integer)
    #   scale - Scaling factor applied (multiplied) to computed Laplacian values
    #           (scale = 1 is unscaled)
    lp_img = pcv.laplace_filter(gray_img=img, ksize=1, scale=1)

    # Plot histogram of grayscale values
    pcv.visualize.histogram(gray_img=lp_img)

    # Lapacian image sharpening, this step will enhance the darkness of the edges detected
    lp_shrp_img = pcv.image_subtract(gray_img1=img, gray_img2=lp_img)

    # Plot histogram of grayscale values, this helps to determine thresholding value
    pcv.visualize.histogram(gray_img=lp_shrp_img)
    # Sobel filtering
    # 1st derivative sobel filtering along horizontal axis, kernel = 1)

    # Inputs:
    #   gray_img - Grayscale image data
    #   dx - Derivative of x to analyze
    #   dy - Derivative of y to analyze
    #   ksize - Aperture size used to calculate 2nd derivative, specifies the size of the kernel and must be an odd integer
    # NOTE: Aperture size must be greater than the largest derivative (ksize > dx & ksize > dy)
    sbx_img = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1)

    # 1st derivative sobel filtering along vertical axis, kernel = 1)
    sby_img = pcv.sobel_filter(gray_img=img, dx=0, dy=1, ksize=1)

    # Combine the effects of both x and y filters through matrix addition
    # This will capture edges identified within each plane and emphasize edges found in both images

    # Inputs:
    #   gray_img1 - Grayscale image data to be added to gray_img2
    #   gray_img2 - Grayscale image data to be added to gray_img1
    sb_img = pcv.image_add(gray_img1=sbx_img, gray_img2=sby_img)

    # Use a lowpass (blurring) filter to smooth sobel image

    # Inputs:
    #   gray_img - Grayscale image data
    #   ksize - Kernel size (integer or tuple), (ksize, ksize) box if integer input,
    #           (n, m) box if tuple input
    mblur_img = pcv.median_blur(gray_img=sb_img, ksize=1)

    # Inputs:
    #   gray_img - Grayscale image data
    mblur_invert_img = pcv.invert(gray_img=mblur_img)

    # combine the smoothed sobel image with the laplacian sharpened image
    # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169
    edge_shrp_img = pcv.image_add(gray_img1=mblur_invert_img,
                                  gray_img2=lp_shrp_img)

    # Perform thresholding to generate a binary image
    tr_es_img = pcv.threshold.binary(gray_img=edge_shrp_img,
                                     threshold=145,
                                     max_value=255,
                                     object_type='dark')

    # Do erosion with a 3x3 kernel (ksize=3)

    # Inputs:
    #   gray_img - Grayscale (usually binary) image data
    #   ksize - The size used to build a ksize x ksize
    #            matrix using np.ones. Must be greater than 1 to have an effect
    #   i - An integer for the number of iterations
    e1_img = pcv.erode(gray_img=tr_es_img, ksize=3, i=1)
    # Bring the two object identification approaches together.
    # Using a logical OR combine object identified by background subtraction and the object identified by derivative filter.

    # Inputs:
    #   bin_img1 - Binary image data to be compared in bin_img2
    #   bin_img2 - Binary image data to be compared in bin_img1
    comb_img = pcv.logical_or(bin_img1=e1_img, bin_img2=bkg_sub_thres_img)

    # Get masked image, Essentially identify pixels corresponding to plant and keep those.

    # Inputs:
    #   rgb_img - RGB image data
    #   mask - Binary mask image data
    #   mask_color - 'black' or 'white'
    masked_erd = pcv.apply_mask(rgb_img=img, mask=comb_img, mask_color='black')

    # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges
    # img is (1280 X 960)
    # mask for the bottom of the image

    # Inputs:
    #   img - RGB or grayscale image data
    #   p1 - Point at the top left corner of the rectangle (tuple)
    #   p2 - Point at the bottom right corner of the rectangle (tuple)
    #   color 'black' (default), 'gray', or 'white'
    #
    masked1, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img=img,
                                                                      p1=(500,
                                                                          875),
                                                                      p2=(720,
                                                                          960))
    # mask the edges
    masked2, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img=img,
                                                                      p1=(1,
                                                                          1),
                                                                      p2=(1279,
                                                                          959))
    bx12_img = pcv.logical_or(bin_img1=box1_img, bin_img2=box2_img)
    inv_bx1234_img = bx12_img  # we dont invert
    inv_bx1234_img = bx12_img
    #inv_bx1234_img = pcv.invert(gray_img=bx12_img)

    edge_masked_img = pcv.apply_mask(rgb_img=masked_erd,
                                     mask=inv_bx1234_img,
                                     mask_color='black')
    #print("here we create a mask")
    mask, masked = pcv.threshold.custom_range(rgb_img=edge_masked_img,
                                              lower_thresh=[25],
                                              upper_thresh=[175],
                                              channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #print("end")
    # Identify objects

    # Inputs:
    #   img - RGB or grayscale image data for plotting
    #   mask - Binary mask used for detecting contours
    id_objects, obj_hierarchy = pcv.find_objects(img=edge_masked_img,
                                                 mask=mask)

    # Define ROI

    # Inputs:
    #   img - RGB or grayscale image to plot the ROI on
    #   x - The x-coordinate of the upper left corner of the rectangle
    #   y - The y-coordinate of the upper left corner of the rectangle
    #   h - The height of the rectangle
    #   w - The width of the rectangle
    roi1, roi_hierarchy = pcv.roi.rectangle(img=edge_masked_img,
                                            x=100,
                                            y=100,
                                            h=800,
                                            w=1000)

    # Decide which objects to keep

    # Inputs:
    #    img            = img to display kept objects
    #    roi_contour    = contour of roi, output from any ROI function
    #    roi_hierarchy  = contour of roi, output from any ROI function
    #    object_contour = contours of objects, output from pcv.find_objects function
    #    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
    #    roi_type       = 'partial' (default, for partially inside), 'cutto', or
    #    'largest' (keep only largest contour)
    with HiddenPrints():
        roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects(
            img=edge_masked_img,
            roi_contour=roi1,
            roi_hierarchy=roi_hierarchy,
            object_contour=id_objects,
            obj_hierarchy=obj_hierarchy,
            roi_type='largest')

    rgb_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)

    # Inputs:
    #   img - RGB or grayscale image data for plotting
    #   contours - Contour list
    #   hierarchy - Contour hierarchy array
    o, m = pcv.object_composition(img=rgb_img,
                                  contours=roi_objects,
                                  hierarchy=hierarchy5)

    ### Analysis ###

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Perform signal analysis

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj- Single or grouped contour object
    #   mask - Binary image mask to use as mask for moments analysis
    shape_img = pcv.analyze_object(img=img, obj=o, mask=m)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "shape_img_side.png")

    # Inputs:
    #   gray_img - 8 or 16-bit grayscale image data
    #   mask - Binary mask made from selected contours
    #   bins - Number of classes to divide the spectrum into
    #   histplot - If True, plots the histogram of intensity values
    nir_hist = pcv.analyze_nir_intensity(gray_img=img,
                                         mask=kept_mask,
                                         bins=256,
                                         histplot=True)

    # Pseudocolor the grayscale image to a colormap

    # Inputs:
    #     gray_img - Grayscale image data
    #     obj - Single or grouped contour object (optional), if provided the pseudocolored image gets cropped down to the region of interest.
    #     mask - Binary mask (optional)
    #     background - Background color/type. Options are "image" (gray_img), "white", or "black". A mask must be supplied.
    #     cmap - Colormap
    #     min_value - Minimum value for range of interest
    #     max_value - Maximum value for range of interest
    #     dpi - Dots per inch for image if printed out (optional, if dpi=None then the default is set to 100 dpi).
    #     axes - If False then the title, x-axis, and y-axis won't be displayed (default axes=True).
    #     colorbar - If False then the colorbar won't be displayed (default colorbar=True)
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=img,
                                                  mask=kept_mask,
                                                  cmap='viridis')

    # Perform shape analysis

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj- Single or grouped contour object
    #   mask - Binary image mask to use as mask for moments analysis
    shape_imgs = pcv.analyze_object(img=rgb_img, obj=o, mask=m)

    # Write shape and nir data to results file
    pcv.print_results(filename=args.result)