Пример #1
0
 def it_returns_3_for_rho_one_half():
     im = imops.gauss2_rho_form(10,
                                1.0,
                                1.0,
                                8,
                                8,
                                rho=0.5,
                                const=0,
                                mea=17)
     ratio = imops.distribution_aspect_ratio(im)
     assert (ratio - 3.0)**2 < 0.001**2
Пример #2
0
 def it_returns_2_for_x_ellipse():
     im = imops.gauss2_rho_form(10,
                                1.0,
                                1.5,
                                8,
                                8,
                                rho=0.0,
                                const=0,
                                mea=17)
     ratio = imops.distribution_aspect_ratio(im)
     assert (ratio - 2.25)**2 < 0.01**2
Пример #3
0
 def it_returns_1_for_circluar():
     im = imops.gauss2_rho_form(10,
                                1.0,
                                1.0,
                                8,
                                8,
                                rho=0.0,
                                const=0,
                                mea=17)
     ratio = imops.distribution_aspect_ratio(im)
     assert (ratio - 1.0)**2 < 0.001**2
Пример #4
0
def _psf_accumulate(im,
                    locs,
                    mea,
                    keep_dist=8,
                    threshold_abs=None,
                    return_reasons=True):
    """
    Given a single im, typically a regional sub-image, accumulate
    PSF evidence from each locs that meets a set of criteria.

    Any one image may not produce enough (or any) candidate spots and it
    is therefore expected that this function is called over a large number
    of fields to get sufficient samples.

    Arguments:
        im: Expected to be a single field, channel, cycle (BG already removed).
        locs: array (n, 2) in coordinates of im. Expected to be well-separated
        mea: The peak_measure (must be odd)
        threshold_abs: The average pixel brightness to accept the peak
        keep_dist: Pixels distance to determine crowding

    Returns:
        psf: ndarray (mea, mea) image
        reason_counts: An array of masks of why peaks were accepted/rejected
            See PSFEstimateMaskFields for the columns
    """
    from scipy.spatial.distance import cdist  # Defer slow import

    n_locs = len(locs)
    dist = cdist(locs, locs, metric="euclidean")
    dist[dist == 0.0] = np.nan

    if not np.all(np.isnan(dist)):
        closest_dist = np.nanmin(dist, axis=1)
    else:
        closest_dist = np.zeros(n_locs)

    # Aligned peaks will accumulate into this psf matrix
    dim = (mea, mea)
    dim2 = (mea + 2, mea + 2)
    psf = np.zeros(dim)

    n_reason_mask_fields = len(PSFEstimateMaskFields)
    reason_masks = np.zeros((n_locs, n_reason_mask_fields))

    for i, (loc, closest_neighbor_dist) in enumerate(zip(locs, closest_dist)):
        reason_masks[i, PSFEstimateMaskFields.considered] = 1

        # EXTRACT a peak with extra pixels around the edges (dim2 not dim)
        peak_im = imops.crop(im, off=YX(loc), dim=HW(dim2), center=True)

        if peak_im.shape != dim2:
            # Skip near edges
            reason_masks[i, PSFEstimateMaskFields.skipped_near_edges] = 1
            continue

        if closest_neighbor_dist < keep_dist:
            reason_masks[i, PSFEstimateMaskFields.skipped_too_crowded] = 1
            continue

        if np.any(np.isnan(peak_im)):
            reason_masks[i, PSFEstimateMaskFields.skipped_has_nan] = 1
            continue

        # Sub-pixel align the peak to the center
        assert not np.any(np.isnan(peak_im))
        centered_peak_im = sub_pixel_center(peak_im.astype(np.float64))

        # Removing ckipping as the noise should cancel out
        # centered_peak_im = np.clip(centered_peak_im, a_min=0.0, a_max=None)
        peak_max = np.max(centered_peak_im)
        if peak_max == 0.0:
            reason_masks[i, PSFEstimateMaskFields.skipped_empty] = 1
            continue

        if threshold_abs is not None and peak_max < threshold_abs:
            # Reject spots that are not active
            reason_masks[i, PSFEstimateMaskFields.skipped_too_dark] = 1
            continue

        r = imops.distribution_aspect_ratio(centered_peak_im)
        if r > 2.0:
            reason_masks[i, PSFEstimateMaskFields.skipped_too_oval] = 1
            continue

        # TRIM off the extra now
        centered_peak_im = centered_peak_im[1:-1, 1:-1]

        psf += centered_peak_im / np.sum(centered_peak_im)
        reason_masks[i, PSFEstimateMaskFields.accepted] = 1

    n_accepted = np.sum(reason_masks[:, PSFEstimateMaskFields.accepted])
    if n_accepted > 0:
        psf /= np.sum(psf)

    if return_reasons:
        return psf, reason_masks

    return psf