def run_games(config):
    game = Othello()
    model = ""
    x = config.iterations
    while(x != 0):
        x -= 1
        models = sorted(glob.glob(config.data.model_location+"*.h5"))
        if model == "":
            model = models[-1]
            print("Loading new model: %s" % util.getPlayerName(model))
            ai = AIPlayer(config.buffer_size, config.game.simulation_num_per_move, model=model)
        elif models[-1] != model:
            model = models[-1]
            print("Loading new model: %s" % util.getPlayerName(model))
            ai.load(model)
		
        start=time()
        for j in range(config.nb_game_in_file):
            util.print_progress_bar(j, config.nb_game_in_file, start=start)
            side = -1
            turn = 1
            while not game.game_over():
                ai.tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    ai.tau = config.game.tau_2
                t = ai.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            ai.update_buffer(game.get_winner())
            game.reset_board()
        #print("Average Game Time: ", (time()-start)/(config.nb_game_in_file))
        util.print_progress_bar(config.nb_game_in_file, config.nb_game_in_file, start=start)
        save_games(config, ai.buffer)
    t.join()
Пример #2
0
def calc_ranking(config):
    models = sorted(glob.glob(config.data.model_location + "*.h5"))
    players = []
    for i, model in enumerate(models):
        if i % config.model_skip == 0 or i == len(models):
            players.append(model)

    wtl = np.zeros((len(players), 3))
    win_matrix = np.zeros((len(players), len(players)))
    game = Othello()

    ##give every player a random order to play games against opponents
    order = []
    for i in range(len(players)):
        nums = [x for x in range(len(players))]
        nums.remove(i)
        random.shuffle(nums)
        order.append(nums)

    p1 = AIPlayer(1, config.game.simulation_num_per_move, model=players[0])
    p2 = AIPlayer(1,
                  config.game.simulation_num_per_move,
                  model=players[order[0][0]])

    start = time()
    print(
        "Playing random round robin with %d players and %d games per player" %
        (len(players), config.game_num_per_model))
    for i in range(config.game_num_per_model // 2):
        util.print_progress_bar(i, config.game_num_per_model // 2, start=start)
        ordering = [x for x in range(len(players))]
        random.shuffle(ordering)
        for j in ordering:
            AIPlayer.clear()
            x = i
            if x >= len(order[j]):
                x %= len(order[j])
                if x == 0:
                    random.shuffle(order[j])

            p1.load(players[j])
            p2.load(players[order[j][x]])

            side = -1
            turn = 1
            while not game.game_over():
                tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    tau = config.game.tau_2
                p1.tau = tau
                p2.tau = tau
                if side == -1:
                    t = p1.pick_move(game, side)
                else:
                    t = p2.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            if game.get_winner() == -1:
                win_matrix[j, order[j][x]] += 1
                wtl[j, 0] += 1
                wtl[order[j][x], 2] += 1
            elif game.get_winner() == 1:
                win_matrix[order[j][x], j] += 1
                wtl[j, 2] += 1
                wtl[order[j][x], 0] += 1
            else:
                win_matrix[j, order[j][x]] += 0.5
                win_matrix[order[j][x], j] += 0.5
                wtl[j, 1] += 1
                wtl[order[j][x], 1] += 1
            game.reset_board()
    util.print_progress_bar(config.game_num_per_model // 2,
                            config.game_num_per_model // 2,
                            start=start)
    params = choix.ilsr_pairwise_dense(win_matrix)
    print("\nRankings:")
    for i, player in enumerate(np.argsort(params)[::-1]):
        print(
            "%d. %s (expected %d) with %0.2f rating and results of %d-%d-%d" %
            (i + 1, os.path.basename(players[player]), len(players) - player,
             params[player], wtl[player, 0], wtl[player, 1], wtl[player, 2]))
    print(
        "\n(Rating Diff, Winrate) -> (0.5, 62%), (1, 73%), (2, 88%), (3, 95%), (5, 99%)"
    )