def synthesized_met(self, request):
        img, model = request.param.split('-')
        # make the images really small so nothing takes as long
        if img == 'rgb':
            img = po.load_images(op.join(DATA_DIR, 'color_wheel.jpg'),
                                 False).to(DEVICE)
            img = img[..., :16, :16]
        else:
            img = po.load_images(op.join(DATA_DIR, 'nuts.pgm')).to(DEVICE)
            img = img[..., :16, :16]
        if model == 'class':
            #  height=1 and order=0 to limit the time this takes, and then we
            #  only return one of the tensors so that everything is easy for
            #  plotting code to figure out (if we downsampled and were on an
            #  RGB image, we'd have a tensor of shape [1, 9, h, w], because
            #  we'd have the residuals and one filter output for each channel,
            #  and our code doesn't know how to handle that)
            class SPyr(po.simul.Steerable_Pyramid_Freq):
                def __init__(self, *args, **kwargs):
                    super().__init__(*args, **kwargs)

                def forward(self, *args, **kwargs):
                    return super().forward(*args, **kwargs)[(0, 0)]

            model = SPyr(img.shape[-2:], height=1, order=0).to(DEVICE)
        else:
            # to serve as a metric, need to return a single value, but SSIM
            # will return a separate value for each RGB channel
            def rgb_ssim(*args, **kwargs):
                return po.metric.ssim(*args, **kwargs).mean()

            model = rgb_ssim
        met = po.synth.Metamer(img, model)
        met.synthesize(max_iter=2, store_progress=True)
        return met
Пример #2
0
 def test_msssim_analysis(self, msssim_images):
     # True values are defined by https://ece.uwaterloo.ca/~z70wang/research/iwssim/msssim.zip
     true_values = torch.tensor(
         [1.0000000, 0.9112161, 0.7699084, 0.8785111, 0.9488805],
         device=DEVICE)
     computed_values = torch.zeros_like(true_values)
     base_img = po.load_images(op.join(msssim_images,
                                       "samp0.tiff")).to(DEVICE)
     for i in range(len(true_values)):
         other_img = po.load_images(op.join(msssim_images,
                                            f"samp{i}.tiff")).to(DEVICE)
         computed_values[i] = po.metric.ms_ssim(base_img, other_img)
     assert torch.allclose(true_values, computed_values)
Пример #3
0
 def img(self, request):
     im, shape = request.param.split('-')
     img = po.load_images(op.join(DATA_DIR, f'{im}.pgm')).to(DEVICE)
     if shape == '224':
         img = img[..., :224, :224]
     elif shape == '128_1':
         img = img[..., :128, :]
     elif shape == '128_2':
         img = img[..., :128]
     return img
    def synthesized_mad(self, request):
        # make the images really small so nothing takes as long
        if request.param == 'rgb':
            img = po.load_images(op.join(DATA_DIR, 'color_wheel.jpg'),
                                 False).to(DEVICE)
            img = img[..., :16, :16]
        else:
            img = po.load_images(op.join(DATA_DIR, 'nuts.pgm')).to(DEVICE)
            img = img[..., :16, :16]
        model1 = po.simul.Identity().to(DEVICE)

        # to serve as a metric, need to return a single value, but SSIM
        # will return a separate value for each RGB channel
        def rgb_ssim(*args, **kwargs):
            return po.metric.ssim(*args, **kwargs).mean()

        model2 = rgb_ssim
        mad = po.synth.MADCompetition(img, model1, model2)
        mad.synthesize('model_1_min', max_iter=2, store_progress=True)
        return mad
Пример #5
0
 def test_ssim_analysis(self, weighted, other_img, ssim_images,
                        ssim_analysis, ssim_base_img):
     mat_type = {True: 'weighted', False: 'standard'}[weighted]
     other = po.load_images(op.join(ssim_images,
                                    f"samp{other_img}.tif")).to(DEVICE)
     # dynamic range is 1 for these images, because po.load_images
     # automatically re-ranges them. They were comptued with
     # dynamic_range=255 in MATLAB, and by correctly setting this value,
     # that should be corrected for
     plen_val = po.metric.ssim(ssim_base_img, other, weighted)
     mat_val = torch.tensor(
         ssim_analysis[mat_type][f'samp{other_img}'].astype(np.float32),
         device=DEVICE)
     # float32 precision is ~1e-6 (see `np.finfo(np.float32)`), and the
     # errors increase through multiplication and other operations.
     print(plen_val - mat_val, plen_val, mat_val)
     assert torch.allclose(plen_val, mat_val.view_as(plen_val), atol=1e-5)
def color_img():
    img = po.load_images(op.join(DATA_DIR, 'color_wheel.jpg'),
                         as_gray=False).to(DEVICE)
    return img[..., :256, :256]
def einstein_img():
    return po.load_images(op.join(DATA_DIR, 'einstein.pgm')).to(DEVICE)
def curie_img():
    return po.load_images(op.join(DATA_DIR, 'curie.pgm')).to(DEVICE)
Пример #9
0
 def ssim_base_img(self, ssim_images, ssim_analysis):
     return po.load_images(op.join(ssim_images,
                                   ssim_analysis['base_img'])).to(DEVICE)