Пример #1
0
    def _convert(self, audio):
        #import speech_recognition as sr

        with audio.get_filename() as filename:
            with sr.AudioFile(filename) as source:
                clip = self.recognizer.record(source)

        _json = self._query_api(clip)
        if 'results' in _json:
            results = _json['results']
        else:
            raise Exception(
                'received invalid results from API: {0}'.format(str(_json)))
        elements = []
        for result in results:
            if result['final'] is True:
                timestamps = result['alternatives'][0]['timestamps']
                if self.resolution is 'words':
                    for entry in timestamps:
                        text = entry[0]
                        start = entry[1]
                        end = entry[2]
                        elements.append(TextStim(text=text, onset=start,
                                                 duration=end-start))
                elif self.resolution is 'phrases':
                    text = result['alternatives'][0]['transcript']
                    start = timestamps[0][1]
                    end = timestamps[-1][2]
                    elements.append(TextStim(text=text, onset=start,
                                             duration=end-start))
        return ComplexTextStim(elements=elements)
Пример #2
0
    def _convert(self, stim):
        request = self._build_request([stim])
        responses = self._query_api(request)
        response = responses[0]

        if response:
            annotations = response[self.response_object]
            # Combine the annotations
            if self.handle_annotations == 'first':
                text = annotations[0]['description']
                return TextStim(text=text,
                                onset=stim.onset,
                                duration=stim.duration)
            elif self.handle_annotations == 'concatenate':
                text = ''
                for annotation in annotations:
                    text += annotation['description']
                return TextStim(text=text,
                                onset=stim.onset,
                                duration=stim.duration)
            elif self.handle_annotations == 'list':
                texts = []
                for annotation in annotations:
                    texts.append(
                        TextStim(text=annotation['description'],
                                 onset=stim.onset,
                                 duration=stim.duration))
                return texts

        else:
            return TextStim(text='', onset=stim.onset, duration=stim.duration)
Пример #3
0
    def _convert(self, stims):
        request = self._build_request(stims)
        responses = self._query_api(request)
        texts = []

        for response in responses:
            if response and self.response_object in response:
                annotations = response[self.response_object]
                # Combine the annotations
                if self.handle_annotations == 'first':
                    text = annotations[0]['description']
                    texts.append(TextStim(text=text))
                elif self.handle_annotations == 'concatenate':
                    text = ''
                    for annotation in annotations:
                        text = ' '.join([text, annotation['description']])
                    texts.append(TextStim(text=text))
                elif self.handle_annotations == 'list':
                    for annotation in annotations:
                        texts.append(TextStim(text=annotation['description']))
            elif 'error' in response:
                raise Exception(response['error']['message'])
            else:
                texts.append(TextStim(text=''))

        return texts
Пример #4
0
 def _filter(self, stim):
     if self.tokenize:
         tokens = stim.text.split()
         stemmed = ' '.join([self.stemmer.stem(tok) for tok in tokens])
     else:
         stemmed = self.stemmer.stem(stim.text)
     return TextStim(stim.filename, stemmed)
Пример #5
0
    def _filter(self, stim):
        pos_map = {
            'ADJ': 'a',
            'ADJ_SAT': 's',
            'ADV': 'r',
            'NOUN': 'n',
            'VERB': 'v'
        }

        def pos_wordnet(txt):
            pos_tagged = dict(nltk.pos_tag(txt, tagset='universal'))
            pos_tagged = {t: pos_map[tag] if tag in pos_map else 'n'
                          for t, tag in pos_tagged.items()}
            return pos_tagged

        tokens = [stim.text]
        if self.tokenize:
            tokens = nltk.word_tokenize(tokens[0])
        tokens = [t if self.case_sensitive else t.lower() for t in tokens]
        if not isinstance(self.stemmer, stem.WordNetLemmatizer):
            stemmed = ' '.join([self.stemmer.stem(t) for t in tokens])
        else:
            pos_tagged = pos_wordnet(tokens)
            stemmed = ' '.join([self.stemmer.lemmatize(t, pos=pos_tagged[t])
                                for t in tokens])
        return TextStim(stim.filename, stemmed, stim.onset, stim.duration,
                        stim.order, stim.url)
Пример #6
0
 def _convert(self, stim):
     verify_dependencies(['pytesseract'])
     text = pytesseract.image_to_string(Image.fromarray(stim.data))
     return TextStim(text=text,
                     onset=stim.onset,
                     duration=stim.duration,
                     order=stim.order)
Пример #7
0
 def _filter(self, stim):
     if self.tokenizer:
         tokens = self.tokenizer.tokenize(stim.text)
     else:
         tokens = word_tokenize(stim.text)
     stims = [TextStim(stim.filename, token, order=i)
              for i, token in enumerate(tokens)]
     return stims
Пример #8
0
 def _filter(self, stim):
     if self.tokenizer:
         tokens = self.tokenizer.tokenize(stim.text)
     else:
         tokens = word_tokenize(stim.text)
     stims = [TextStim(stim.filename, token, stim.onset, stim.duration)
              for token in tokens]
     return stims
Пример #9
0
 def _filter(self, stim):
     tokens = word_tokenize(stim.text)
     tokens = [tok for tok in tokens if tok not in self.tokens]
     text = ' '.join(tokens)
     return TextStim(stim.filename,
                     text,
                     onset=stim.onset,
                     duration=stim.duration,
                     order=stim.order)
Пример #10
0
 def _filter(self, stim):
     if self.tokenize:
         tokens = stim.text.split()
         stemmed = ' '.join([self.stemmer.stem(tok) for tok in tokens])
     else:
         stemmed = self.stemmer.stem(stim.text)
     return TextStim(stim.filename,
                     stemmed,
                     onset=stim.onset,
                     duration=stim.duration,
                     order=stim.order)
Пример #11
0
    def _convert(self, stim):
        params = {'language': self.language, 'detectOrientation': False}
        response = self._query_api(stim, params)

        lines = []
        for r in response['regions']:
            for l in r['lines']:
                lines.append(' '.join([w['text'] for w in l['words']]))

        text = '\n'.join(lines)
        return TextStim(text=text)
Пример #12
0
    def _convert(self, audio):
        verify_dependencies(['sr'])
        offset = 0.0 if audio.onset is None else audio.onset

        with audio.get_filename() as filename:
            with sr.AudioFile(filename) as source:
                clip = self.recognizer.record(source)

        _json = self._query_api(clip)
        if 'results' in _json:
            results = _json['results']
        else:
            raise Exception('received invalid results from API: {0}'.format(
                str(_json)))
        elements = []
        order = 0
        for result in results:
            if result['final'] is True:
                timestamps = result['alternatives'][0]['timestamps']
                if self.resolution is 'words':
                    for entry in timestamps:
                        text = entry[0]
                        start = entry[1]
                        end = entry[2]
                        elements.append(
                            TextStim(text=text,
                                     onset=offset + start,
                                     duration=end - start,
                                     order=order))
                        order += 1
                elif self.resolution is 'phrases':
                    text = result['alternatives'][0]['transcript']
                    start = timestamps[0][1]
                    end = timestamps[-1][2]
                    elements.append(
                        TextStim(text=text,
                                 onset=offset + start,
                                 duration=end - start,
                                 order=order))
                    order += 1
        return ComplexTextStim(elements=elements, onset=audio.onset)
Пример #13
0
    def _convert(self, audio):
        import speech_recognition as sr
        with sr.AudioFile(audio.filename) as source:
            clip = self.recognizer.record(source)

        result = self._query_api(clip)

        timestamps = result['results'][0]['alternatives'][0]['timestamps']
        elements = []
        for i, entry in enumerate(timestamps):
            elements.append(
                TextStim(text=entry[0],
                         onset=entry[1],
                         duration=entry[2] - entry[1]))
        return ComplexTextStim(elements=elements)
Пример #14
0
    def _convert(self, audio):
        verify_dependencies(['rev_ai'])
        msg = "Beginning audio transcription with a timeout of %fs. Even for "\
              "small audios, full transcription may take awhile." % self.timeout
        logging.warning(msg)

        if audio.url:
            job = self.client.submit_job_url(audio.url)
        else:
            with audio.get_filename() as filename:
                job = self.client.submit_job_local_file(filename)

        operation_start = time.time()
        response = self.client.get_job_details(job.id)
        while (response.status == rev_ai.JobStatus.IN_PROGRESS) and \
              (time.time() - operation_start) < self.timeout:
            response = self.client.get_job_details(job.id)
            time.sleep(self.request_rate)

        if (time.time() - operation_start) >= self.timeout:
            msg = "Conversion reached the timeout limit of %fs." % self.timeout
            logging.warning(msg)

        if response.status == rev_ai.JobStatus.FAILED:
            raise Exception('API failed: %s' % response.failure_detail)

        result = self.client.get_transcript_object(job.id)

        elements = []
        order = 0
        for m in result.monologues:
            for e in m.elements:
                if e.type_ == 'text':
                    start = e.timestamp
                    end = e.end_timestamp
                    elements.append(
                        TextStim(text=e.value,
                                 onset=start,
                                 duration=end - start,
                                 order=order))
                    order += 1

        return ComplexTextStim(elements=elements, onset=audio.onset)
Пример #15
0
    def _convert(self, stim):
        request = self._build_request(stim)
        response = self._query_api(request)

        if 'error' in response:
            raise Exception(response['error']['message'])

        words = []
        if 'results' in response:
            for result in response['results']:
                transcription = result['alternatives'][0]
                for w in transcription['words']:
                    onset = float(w['startTime'][:-1])
                    duration = float(w['endTime'][:-1]) - onset
                    words.append(TextStim(text=w['word'],
                                          onset=onset,
                                          duration=duration))

        return ComplexTextStim(elements=words)
Пример #16
0
 def _filter(self, stim):
     return TextStim(stim.filename, stim.text.lower())
Пример #17
0
 def _filter(self, stim):
     stemmed = self.stemmer.stem(stim.text)
     return TextStim(stim.filename, stemmed, stim.onset, stim.duration)
Пример #18
0
 def _convert(self, stim):
     import pytesseract
     text = pytesseract.image_to_string(Image.fromarray(stim.data))
     return TextStim(text=text, onset=stim.onset, duration=stim.duration)
Пример #19
0
 def _convert(self, stim):
     verify_dependencies(['pytesseract'])
     text = pytesseract.image_to_string(Image.fromarray(stim.data))
     return TextStim(text=text)
Пример #20
0
 def _filter(self, stim):
     tokens = word_tokenize(stim.text)
     tokens = [tok for tok in tokens if tok not in self.tokens]
     text = ' '.join(tokens)
     return TextStim(stim.filename, text)
Пример #21
0
 def _filter(self, stim):
     pattern = '[%s]' % re.escape(string.punctuation)
     text = re.sub(pattern, '', stim.text)
     return TextStim(stim.filename, text)