def test_InversionRule(self): rule = rules.InversionRule(self.chainer, types.InheritanceLink) self._inh_animal_breathe() result = self.chainer._apply_forward(rule) print result
def create_chainer(self, atomspace): self.chainer = Chainer(atomspace, stimulateAtoms=False, agent=self) deduction_link_types = [types.InheritanceLink] # types.SubsetLink, types.IntensionalInheritanceLink] for link_type in deduction_link_types: self.chainer.add_rule(rules.InversionRule(self.chainer, link_type)) self.chainer.add_rule(rules.DeductionRule(self.chainer, link_type))
def test_InversionRule_backward(self): rule = rules.InversionRule(self.chainer, types.InheritanceLink) self._inh_animal_breathe() self.inh_breathe_animal = self.atomspace.add_link(types.InheritanceLink, [self.breathe, self.animal]) self.inh_breathe_animal.av = {'sti':1} result = self.chainer._apply_backward(rule) print result
def create_chainer(self, atomspace): self.chainer = Chainer(atomspace, stimulateAtoms=False, agent=self, learnRuleFrequencies=True) # ImplicationLink is MixedImplicationLink, you could also have Extensional and Intensional Implication. etc. but that's a bit much. # similarity_types = [types.SimilarityLink, types.ExtensionalSimilarityLink, types.IntensionalSimilarityLink] # types.EquivalenceLink] # conditional_probability_types = [types.InheritanceLink, types.SubsetLink, types.IntensionalInheritanceLink, types.ImplicationLink] # always use the mixed inheritance types, because human inference is normally a mix of intensional and extensional conditional_probability_types = [ types.InheritanceLink, types.ImplicationLink ] similarity_types = [types.SimilarityLink, types.EquivalenceLink] for link_type in conditional_probability_types: self.chainer.add_rule(rules.InversionRule(self.chainer, link_type)) self.chainer.add_rule(rules.DeductionRule(self.chainer, link_type)) self.chainer.add_rule( rules.ModusPonensRule(self.chainer, link_type)) # As a hack, use the standard DeductionRule for SimilarityLinks. It needs its own formula really. for link_type in similarity_types: self.chainer.add_rule(rules.DeductionRule(self.chainer, link_type)) # These two Rules create mixed links out of intensional and extensional links self.chainer.add_rule(rules.InheritanceRule(self.chainer)) self.chainer.add_rule(rules.SimilarityRule(self.chainer)) # and/or/not self.chainer.add_rule(rules.NotCreationRule(self.chainer)) self.chainer.add_rule(rules.NotEliminationRule(self.chainer)) for rule in rules.create_and_or_rules(self.chainer, 1, 2): self.chainer.add_rule(rule) # create probabilistic logical links out of MemberLinks self.chainer.add_rule(rules.SubsetEvaluationRule(self.chainer)) self.chainer.add_rule( rules.IntensionalInheritanceEvaluationRule(self.chainer)) self.chainer.add_rule( rules.ExtensionalSimilarityEvaluationRule(self.chainer)) self.chainer.add_rule( rules.IntensionalSimilarityEvaluationRule(self.chainer)) self.chainer.add_rule(rules.EvaluationToMemberRule(self.chainer)) self.chainer.add_rule(rules.MemberToInheritanceRule(self.chainer)) # AttractionLink could be useful for causality self.chainer.add_rule(rules.AttractionRule(self.chainer)) for rule in temporal_rules.create_temporal_rules(self.chainer): self.chainer.add_rule(rule)
def test_standardize_apart_input_output(self): rule = rules.InversionRule(self.chainer, types.InheritanceLink) (input, output) = rule.standardize_apart_input_output(self.chainer)
def create_chainer(self, atomspace): self.chainer = Chainer(atomspace, stimulateAtoms=False, agent=self, learnRuleFrequencies=False) # ImplicationLink is MixedImplicationLink, you could also have Extensional and Intensional Implication. etc. but that's a bit much. # similarity_types = [types.SimilarityLink, types.ExtensionalSimilarityLink, types.IntensionalSimilarityLink] # types.EquivalenceLink] # conditional_probability_types = [types.InheritanceLink, types.SubsetLink, types.IntensionalInheritanceLink, types.ImplicationLink] # always use the mixed inheritance types, because human inference is normally a mix of intensional and extensional conditional_probability_types = [ types.InheritanceLink, types.ImplicationLink ] similarity_types = [types.SimilarityLink, types.EquivalenceLink] for link_type in conditional_probability_types: self.chainer.add_rule(rules.InversionRule(self.chainer, link_type)) self.chainer.add_rule(rules.DeductionRule(self.chainer, link_type)) self.chainer.add_rule(rules.InductionRule(self.chainer, link_type)) self.chainer.add_rule(rules.AbductionRule(self.chainer, link_type)) #self.chainer.add_rule(rules.ModusPonensRule(self.chainer, link_type)) # As a hack, use the standard DeductionRule for SimilarityLinks. It needs its own formula really. for link_type in similarity_types: self.chainer.add_rule(rules.DeductionRule(self.chainer, link_type)) # These two Rules create mixed links out of intensional and extensional links self.chainer.add_rule(rules.InheritanceRule(self.chainer)) self.chainer.add_rule(rules.SimilarityRule(self.chainer)) # boolean links for rule in boolean_rules.create_and_or_rules(self.chainer, 1, 2): self.chainer.add_rule(rule) # create probabilistic logical links out of MemberLinks self.chainer.add_rule(rules.AndEvaluationRule(self.chainer)) self.chainer.add_rule(rules.OrEvaluationRule(self.chainer)) # These two "macro rules" make the individual rules redundant self.chainer.add_rule(rules.ExtensionalLinkEvaluationRule( self.chainer)) self.chainer.add_rule(rules.IntensionalLinkEvaluationRule( self.chainer)) #self.chainer.add_rule(rules.SubsetEvaluationRule(self.chainer)) self.chainer.add_rule(rules.NegatedSubsetEvaluationRule(self.chainer)) #self.chainer.add_rule(rules.ExtensionalSimilarityEvaluationRule(self.chainer)) #self.chainer.add_rule(rules.IntensionalInheritanceEvaluationRule(self.chainer)) #self.chainer.add_rule(rules.IntensionalSimilarityEvaluationRule(self.chainer)) self.member_rules = [rules.EvaluationToMemberRule(self.chainer)] self.member_rules += rules.create_general_evaluation_to_member_rules( self.chainer) for rule in self.member_rules: self.chainer.add_rule(rule) # It's important to have both of these self.chainer.add_rule(rules.MemberToInheritanceRule(self.chainer)) # self.chainer.add_rule(rules.InheritanceToMemberRule(self.chainer)) # AttractionLink could be useful for causality self.chainer.add_rule(rules.AttractionRule(self.chainer))
def create_chainer(self, atomspace): # Note: using stimulateAtoms will cause a segfault if you create the Agent from the Python shell (use the agents-start command in the cogserver shell). It's because giving atoms stimulus only works if the MindAgent is added to the CogServer's list of agents. self.chainer = Chainer(atomspace, stimulateAtoms=False, agent=self, learnRuleFrequencies=True) # ImplicationLink is MixedImplicationLink, you could also have Extensional and Intensional Implication. etc. but that's a bit much. # similarity_types = [types.SimilarityLink, types.ExtensionalSimilarityLink, types.IntensionalSimilarityLink] # types.EquivalenceLink] # conditional_probability_types = [types.InheritanceLink, types.SubsetLink, types.IntensionalInheritanceLink, types.ImplicationLink] # always use the mixed inheritance types, because human inference is normally a mix of intensional and extensional conditional_probability_types = [ types.InheritanceLink, types.ImplicationLink, types.PredictiveImplicationLink ] similarity_types = [types.SimilarityLink, types.EquivalenceLink] for link_type in conditional_probability_types: self.chainer.add_rule(rules.InversionRule(self.chainer, link_type)) self.chainer.add_rule(rules.DeductionRule(self.chainer, link_type)) self.chainer.add_rule(rules.InductionRule(self.chainer, link_type)) self.chainer.add_rule(rules.AbductionRule(self.chainer, link_type)) # Seems better than Modus Ponens - it doesn't make anything up self.chainer.add_rule( rules.TermProbabilityRule(self.chainer, link_type)) self.chainer.add_rule( rules.ModusPonensRule(self.chainer, link_type)) for link_type in similarity_types: # SimilarityLinks don't require an InversionRule obviously self.chainer.add_rule( rules.TransitiveSimilarityRule(self.chainer, link_type)) self.chainer.add_rule( rules.SymmetricModusPonensRule(self.chainer, link_type)) self.chainer.add_rule( predicate_rules.EvaluationImplicationRule(self.chainer)) # These two Rules create mixed links out of intensional and extensional links self.chainer.add_rule(rules.InheritanceRule(self.chainer)) self.chainer.add_rule(rules.SimilarityRule(self.chainer)) # boolean links for rule in boolean_rules.create_and_or_rules(self.chainer, 2, 8): self.chainer.add_rule(rule) # create probabilistic logical links out of MemberLinks self.chainer.add_rule(rules.AndEvaluationRule(self.chainer)) self.chainer.add_rule(rules.OrEvaluationRule(self.chainer)) # These two "macro rules" make the individual rules redundant self.chainer.add_rule(rules.ExtensionalLinkEvaluationRule( self.chainer)) self.chainer.add_rule(rules.IntensionalLinkEvaluationRule( self.chainer)) #self.chainer.add_rule(rules.SubsetEvaluationRule(self.chainer)) self.chainer.add_rule(rules.NegatedSubsetEvaluationRule(self.chainer)) #self.chainer.add_rule(rules.ExtensionalSimilarityEvaluationRule(self.chainer)) #self.chainer.add_rule(rules.IntensionalInheritanceEvaluationRule(self.chainer)) #self.chainer.add_rule(rules.IntensionalSimilarityEvaluationRule(self.chainer)) self.member_rules = [ rules.EvaluationToMemberRule(self.chainer), rules.MemberToEvaluationRule(self.chainer) ] self.member_rules += rules.create_general_evaluation_to_member_rules( self.chainer) for rule in self.member_rules: self.chainer.add_rule(rule) # It's important to have both of these self.chainer.add_rule(rules.MemberToInheritanceRule(self.chainer)) # self.chainer.add_rule(rules.InheritanceToMemberRule(self.chainer)) # AttractionLink could be useful for causality self.chainer.add_rule(rules.AttractionRule(self.chainer)) self.chainer.add_rule(quantifier_rules.ScholemRule(self.chainer))