Пример #1
0
def callback_graph(update, context):
    country_code = context.match.group(1)
    if country_code == WORLD_IDENT:
        country_code = None
    data = api.timeseries(country_code)
    if data:
        buffer = plot_timeseries(data)
        update.callback_query.answer()
        context.bot.send_photo(chat_id=update.callback_query.message.chat_id, photo=buffer)
        buffer.close()
    else:
        update.callback_query.answer()
        context.bot.send_message(chat_id=update.callback_query.message.chat_id, text=resolve('no_data', lang(update)))
Пример #2
0
def command_graph(update, context):
    if len(context.args) > 0:
        resolved = resolve_query_string(context.args[0])
        if resolved:
            data = api.timeseries(resolved)
        elif WORLD_IDENT in context.args[0]:
            data = api.timeseries()
        else:
            update.message.reply_text(resolve('unknown_place', lang(update)))
            return
    else:
        if 'country' in context.chat_data:
            country_code = context.chat_data['country']
            data = api.timeseries(country_code)
        else:
            data = api.timeseries()
    if data:
        buffer = plot_timeseries(data)
        update.message.reply_photo(photo=buffer)
        buffer.close()
    else:
        update.message.reply_text(resolve('no_data', lang(update)))
Пример #3
0
import glob
import os
import pickle
import matplotlib.pyplot as plt

from antlia import record
from plot import plot_timeseries


def get_metric(rec, start_index, stop_index, field, metric):
    indices = (rec.time > start_index) & (rec.time < stop_index)
    m = getattr(rec[indices][field], metric)
    return m()


if __name__ == '__main__':
    with open('config.p', 'rb') as f:
        cd = pickle.load(f)

    pat = os.path.join(os.path.dirname(__file__),
                       '../data/etrike/calibration/convbike/speed/*kph.csv')
    calfiles = glob.glob(pat)
    r = {}
    for f in calfiles:
        bn = os.path.basename(f)
        v = int(bn[:bn.index('kph')])
        r[v] = record.load_file(f, cd['convbike'])

        plot_timeseries(r[v])
    plt.show()
Пример #4
0
    df = prices[0].get_frame(normalize=normalize)
    df.columns = [prices[0].ticker]
    for i in range(1, len(prices)):
        df2 = prices[i].get_frame(normalize=normalize)
        df2.columns = [prices[i].ticker]
        df = df.join(df2, how='outer')

    return df


if __name__ == '__main__':
    valid_metrics = ['block_chain_work', 'block_num_tx']
    parser = argparse.ArgumentParser(
        description=
        'Compute timeseries correlation for a given metric across coins.')
    parser.add_argument('metrics',
                        nargs='?',
                        choices=valid_metrics,
                        default=valid_metrics)
    args = parser.parse_args()

    if type(args.metrics) != list:
        args.metrics = [args.metrics]

    # Create coins
    coins = [Coin(ticker) for ticker in config.TICKERS]
    for metric in args.metrics:
        df = create_coin_frame(coins, metric, normalize='min_max')
        plot.plot_timeseries(metric, df)
        print df.corr()
Пример #5
0
    def __init__(self, ticker, target='USD'):
        self.ticker = ticker
        self.prices = self._get_prices(target=target)

    def get_frame(self, normalize=None):
        """Return the price data frame, with the same normalization options as in Coin."""
        # Get datetime-indexed timeseries data
        times = []
        data = []
        for t in sorted(self.prices.keys()):
            times.append(datetime.strptime(t, '%Y-%m-%d'))
            data.append(self.prices[t])

        df = pd.DataFrame(data, index=times, columns=['price'])

        # Normalize columns
        self._normalize(df, normalize)

        return df

if __name__ == '__main__':
    prices = [Price(ticker) for ticker in config.ALL_TICKERS]

    # Compute JOIN over price frames
    df = create_price_frame(prices, normalize='z_score')

    # `df` can be replaced with `df.pct_change()` or `pd.rolling_var(df, 7)` to track volatility
    plot.plot_timeseries('Prices', df)
    print df.corr()
Пример #6
0
        for b in self.blocks:
            key = self._time_to_key(b.time)
            b.price = self.prices.get(key)

    def get_frame(self, *fields, **kwargs):
        """
        Return the data frame that includes the given fields.
        Fields must be chosen from 'block_chain_work', 'block_num_tx', or 'price'.
        Min-max and Z-score normalization can be performed by passing in normalize='min_max' or
        normalize='z_score', respectively.
        """
        data = [b.__dict__ for b in self.blocks]
        times = [b.time for b in self.blocks]
        df = pd.DataFrame(data, index=times, columns=fields)

        # Normalize columns
        normalize = kwargs.get('normalize', None)
        self._normalize(df, normalize)

        return df

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description='Compute and plot timeseries correlation for all metrics in a given coin.')
    parser.add_argument('ticker', choices=config.TICKERS.values())
    args = parser.parse_args()

    coin = Coin(args.ticker)
    df = coin.get_frame('block_chain_work', 'block_num_tx', 'price')
    plot.plot_timeseries(args.ticker, df, window=100)
Пример #7
0
    def __init__(self, ticker, target='USD'):
        self.ticker = ticker
        self.prices = self._get_prices(target=target)

    def get_frame(self, normalize=None):
        """Return the price data frame, with the same normalization options as in Coin."""
        # Get datetime-indexed timeseries data
        times = []
        data = []
        for t in sorted(self.prices.keys()):
            times.append(datetime.strptime(t, '%Y-%m-%d'))
            data.append(self.prices[t])

        df = pd.DataFrame(data, index=times, columns=['price'])

        # Normalize columns
        self._normalize(df, normalize)

        return df


if __name__ == '__main__':
    prices = [Price(ticker) for ticker in config.ALL_TICKERS]

    # Compute JOIN over price frames
    df = create_price_frame(prices, normalize='z_score')

    # `df` can be replaced with `df.pct_change()` or `pd.rolling_var(df, 7)` to track volatility
    plot.plot_timeseries('Prices', df)
    print df.corr()
Пример #8
0
    return df


def create_price_frame(prices, normalize=None):
    df = prices[0].get_frame(normalize=normalize)
    df.columns = [prices[0].ticker]
    for i in range(1, len(prices)):
        df2 = prices[i].get_frame(normalize=normalize)
        df2.columns = [prices[i].ticker]
        df = df.join(df2, how='outer')

    return df


if __name__ == '__main__':
    valid_metrics = ['block_chain_work', 'block_num_tx']
    parser = argparse.ArgumentParser(
        description='Compute timeseries correlation for a given metric across coins.')
    parser.add_argument('metrics', nargs='?', choices=valid_metrics, default=valid_metrics)
    args = parser.parse_args()

    if type(args.metrics) != list:
        args.metrics = [args.metrics]

    # Create coins
    coins = [Coin(ticker) for ticker in config.TICKERS]
    for metric in args.metrics:
        df = create_coin_frame(coins, metric, normalize='min_max')
        plot.plot_timeseries(metric, df)
        print df.corr()
Пример #9
0
    def get_frame(self, *fields, **kwargs):
        """
        Return the data frame that includes the given fields.
        Fields must be chosen from 'block_chain_work', 'block_num_tx', or 'price'.
        Min-max and Z-score normalization can be performed by passing in normalize='min_max' or
        normalize='z_score', respectively.
        """
        data = [b.__dict__ for b in self.blocks]
        times = [b.time for b in self.blocks]
        df = pd.DataFrame(data, index=times, columns=fields)

        # Normalize columns
        normalize = kwargs.get('normalize', None)
        self._normalize(df, normalize)

        return df


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description=
        'Compute and plot timeseries correlation for all metrics in a given coin.'
    )
    parser.add_argument('ticker', choices=config.TICKERS.values())
    args = parser.parse_args()

    coin = Coin(args.ticker)
    df = coin.get_frame('block_chain_work', 'block_num_tx', 'price')
    plot.plot_timeseries(args.ticker, df, window=100)