Пример #1
0
ax = pylab.subplot(221,yscale='log')
label_axes('(a)',ax)

if noiseonly:
    tags = [ 'noiseonly_n',
             'noiseonly_y_normed',
             'noiseonly_y' ]
else:
    tags = [ 'noisy_n',
             'noisy_y_normed',
             'noisy_y' ]

plot_peak_func(filename(tags[0]),
               color=colors[0],
               label='unmasked',
               scale_by_noise = False,
               rmin=Mmin,
               rmax=Mmax,
               bins = bins)
plot_peak_func(filename(tags[1]),
               color=colors[1],
               label='weighted',
               scale_by_noise = False,
               rmin=Mmin,
               rmax=Mmax,
               bins = bins)
plot_peak_func(filename(tags[2]),
               color=colors[2],
               label='unweighted',
               scale_by_noise = False,
               rmin=Mmin,
Пример #2
0
ax = pylab.axes( (0.1,0.13,0.43,0.77),yscale='log')

tags = [ 'noisy_n',
         'noisy_y_normed',
         'noisy_y' ]

labels = ['unmasked','weighted','unweighted']

lines = []

for i in range(3):
    l = plot_peak_func(filename(tags[i]),
                       color=colors[i],
                       label=labels[i],
                       scale_by_noise = False,
                       rmin=Mmin,
                       rmax=Mmax,
                       bins = bins)
    lines.append(l)
    
leg = pylab.legend(lines[0],['E-mode','B-mode'],loc=3,frameon=False,)
pylab.legend()
ax.add_artist(leg)

pylab.xlim(0.01,0.039)
pylab.title('Without KL')

ax = pylab.axes( (0.53,0.13,0.43,0.77),yscale='log')

tags = ['900_n_a0.15y','900_y_a0.15y']