ax = pylab.subplot(221,yscale='log') label_axes('(a)',ax) if noiseonly: tags = [ 'noiseonly_n', 'noiseonly_y_normed', 'noiseonly_y' ] else: tags = [ 'noisy_n', 'noisy_y_normed', 'noisy_y' ] plot_peak_func(filename(tags[0]), color=colors[0], label='unmasked', scale_by_noise = False, rmin=Mmin, rmax=Mmax, bins = bins) plot_peak_func(filename(tags[1]), color=colors[1], label='weighted', scale_by_noise = False, rmin=Mmin, rmax=Mmax, bins = bins) plot_peak_func(filename(tags[2]), color=colors[2], label='unweighted', scale_by_noise = False, rmin=Mmin,
ax = pylab.axes( (0.1,0.13,0.43,0.77),yscale='log') tags = [ 'noisy_n', 'noisy_y_normed', 'noisy_y' ] labels = ['unmasked','weighted','unweighted'] lines = [] for i in range(3): l = plot_peak_func(filename(tags[i]), color=colors[i], label=labels[i], scale_by_noise = False, rmin=Mmin, rmax=Mmax, bins = bins) lines.append(l) leg = pylab.legend(lines[0],['E-mode','B-mode'],loc=3,frameon=False,) pylab.legend() ax.add_artist(leg) pylab.xlim(0.01,0.039) pylab.title('Without KL') ax = pylab.axes( (0.53,0.13,0.43,0.77),yscale='log') tags = ['900_n_a0.15y','900_y_a0.15y']