def test_plot_Soares(sim_data): """ plot Soares profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100) pls.plot_mean(data_to_plot, "Soares_quicklook.pdf") pls.plot_drafts(data_to_plot, "Soares_quicklook_drafts.pdf")
def test_plot_var_covar_Soares(sim_data): """ plot Soares var covar profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100, var_covar=True) pls.plot_var_covar_mean(data_to_plot, "Soares_var_covar_mean.pdf") pls.plot_var_covar_components(data_to_plot, "Soares_var_covar_comp.pdf")
def test_plot_GATE_III(sim_data): """ plot GATE_III profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100) pls.plot_mean(data_to_plot, "GATE_III_quicklook.pdf") pls.plot_drafts(data_to_plot, "GATE_III_quicklook_drafts.pdf")
def test_plot_Tan2018(sim_data): """ plot Tan2018 profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100) pls.plot_mean(data_to_plot, "Tan2018_quicklook.pdf") pls.plot_drafts(data_to_plot, "Tan2018_quicklook_drafts.pdf")
def test_plot_Rico(sim_data): """ plot Rico profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100) pls.plot_mean(data_to_plot, "Rico_quicklook.pdf") pls.plot_drafts(data_to_plot, "Rico_quicklook_drafts.pdf")
def test_plot_TRMM_LBA(sim_data): """ plot TRMM_LBA profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100) pls.plot_mean(data_to_plot, "TRMM_LBA_quicklook.pdf") pls.plot_drafts(data_to_plot, "TRMM_LBA_quicklook_drafts.pdf")
def test_plot_var_covar_DYCOMS_RF01(sim_data): """ plot DYCOMS_RF01 quicklook profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100, var_covar=True) pls.plot_var_covar_mean(data_to_plot, "DYCOMS_RF01_var_covar_mean.pdf") pls.plot_var_covar_components(data_to_plot, "DYCOMS_RF01_var_covar_components.pdf")
def test_plot_DYCOMS_RF01(sim_data): """ plot DYCOMS_RF01 quicklook profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100) pls.plot_mean(data_to_plot, "DYCOMS_RF01_quicklook.pdf") pls.plot_drafts(data_to_plot, "DYCOMS_RF01_quicklook_drafts.pdf")
def test_plot_var_covar_Bomex(sim_data): """ plot Bomex var covar """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100, var_covar=True) pls.plot_var_covar_mean(data_to_plot, "Bomex_var_covar_mean.pdf") pls.plot_var_covar_components(data_to_plot, "Bomex_var_covar_components.pdf")
def test_plot_Bomex(sim_data): """ plot Bomex profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100) pls.plot_mean(data_to_plot, "Bomex_quicklook.pdf") pls.plot_drafts(data_to_plot, "Bomex_quicklook_drafts.pdf")
def test_plot_var_covar_GATE_III(sim_data): """ plot GATE III var covar """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100, var_covar=True) pls.plot_var_covar_mean(data_to_plot, "GATE_III_var_covar_mean.pdf") pls.plot_var_covar_components(data_to_plot, "GATE_III_var_covar_components.pdf")
def test_plot_var_covar_Tan2018(sim_data): """ plot Tan2018 var covar """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100, var_covar=True) pls.plot_var_covar_mean(data_to_plot, "Tan2018_var_covar_mean.pdf") pls.plot_var_covar_components(data_to_plot, "Tan2018_var_covar_components.pdf")
def test_plot_var_covar_Rico(sim_data): """ plot Rico variance and covariance of H and QT profiles """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100, var_covar=True) pls.plot_var_covar_mean(data_to_plot, "Rico_var_covar_mean.pdf") pls.plot_var_covar_components(data_to_plot, "Rico_var_covar_components.pdf")
def test_plot_var_covar_TRMM_LBA(sim_data): """ plot TRMM LBA var covar """ data_to_plot = pls.read_data_avg(sim_data, n_steps=100, var_covar=True) pls.plot_var_covar_mean(data_to_plot, "TRMM_LBA_var_covar_mean.pdf") pls.plot_var_covar_components(data_to_plot, "TRMM_LBA_var_covar_components.pdf")
def test_DYCOMS_RF01_radiation(sim_data): """ plots DYCOMS_RF01 """ import matplotlib as mpl mpl.use('Agg') # Must be before importing matplotlib.pyplot or pylab! import matplotlib.pyplot as plt fig = plt.figure(1) fig.set_figheight(12) fig.set_figwidth(14) mpl.rcParams.update({'font.size': 18}) mpl.rc('lines', linewidth=4, markersize=10) plt_data = pls.read_data_avg(sim_data, n_steps=100, var_covar=False) rad_data = pls.read_rad_data_avg(sim_data, n_steps=100) plots = [] # loop over simulation and reference data for t=0 and t=-1 x_lab = ['longwave radiative flux [W/m2]', 'dTdt [K/day]', 'QT [g/kg]', 'QL [g/kg]'] legend = ["lower right", "lower left", "lower left", "lower right"] line = ['--', '--', '-', '-'] plot_y = [rad_data["rad_flux"], rad_data["rad_dTdt"], plt_data["qt_mean"], plt_data["ql_mean"]] plot_x = [rad_data["z"], plt_data["z_half"], plt_data["z_half"], plt_data["z_half"]] color = ["palegreen", "forestgreen"] label = ["ini", "end" ] for plot_it in range(4): plots.append(plt.subplot(2,2,plot_it+1)) #(rows, columns, number) for it in range(2): plots[plot_it].plot(plot_y[plot_it][it], plot_x[plot_it], '.-', color=color[it], label=label[it]) plots[plot_it].legend(loc=legend[plot_it]) plots[plot_it].set_xlabel(x_lab[plot_it]) plots[plot_it].set_ylabel('z [m]') plots[2].set_xlim([1, 10]) plots[3].set_xlim([-0.1, 0.5]) plt.savefig("plots/output/DYCOMS_RF01_radiation.pdf") plt.clf()