Пример #1
0
def plot_new_samples(run_id, model_dir, trained):
    
    dump_dir = "/home/akajal/WatChMaL/VAE/dumps/" + run_id + "/"
    model_status = "trained" if trained is True else "untrained"
    np_arr_path = dump_dir + "samples/" + model_dir + "_" + model_status + ".npz"
    
    np_arr = np.load(np_arr_path)
    np_samples, np_labels, np_energies = np_arr["samples"], np_arr["predicted_labels"], np_arr["predicted_energies"]
    
    np_samples = np_samples.reshape(-1, np_samples.shape[2], np_samples.shape[3], np_samples.shape[4])
    np_labels = np_labels.reshape(-1, 1)
    np_energies = np_energies.reshape(-1, 1)

    i, j = random.randint(0, np_labels.shape[0]-1), random.randint(0, np_labels.shape[0]-1)
    
    plot_utils.plot_actual_vs_recon(np_samples[i], np_samples[j], 
                                    label_dict[np_labels[i].item()], np_energies[i].item(),
                                    label_dict[np_labels[j].item()], np_energies[j].item(),
                                    show_plot=True)
    
    plot_utils.plot_charge_hist(np_samples[i],
                                np_samples[j], 0, num_bins=200)
    
    plot_utils.plot_charge_hist(np_samples,
                                np_samples, 0, num_bins=200)
Пример #2
0
def plot_old_events(run_id, iteration, mode):

    dump_dir = "/home/akajal/WatChMaL/VAE/dumps/" + run_id + "/"

    if mode is "validation":
        np_arr_path = dump_dir + "val_iteration_" + str(iteration) + ".npz"
    else:
        np_arr_path = dump_dir + "iteration_" + str(iteration) + ".npz"

    # Load the numpy array
    np_arr = np.load(np_arr_path)
    np_event, np_recon, np_labels, np_energies = np_arr["events"], np_arr[
        "recon"], np_arr["labels"], np_arr["energies"]

    i = random.randint(0, np_labels.shape[0] - 1)
    plot_utils.plot_actual_vs_recon(np_event[i],
                                    np_recon[i],
                                    label_dict[np_labels[i]],
                                    np_energies[i].item(),
                                    label_dict[np_labels[i]],
                                    np_energies[i].item(),
                                    show_plot=True)

    plot_utils.plot_charge_hist(torch.tensor(np_event).permute(0, 2, 3,
                                                               1).numpy(),
                                np_recon,
                                iteration,
                                num_bins=200)
Пример #3
0
def plot_samples(run_id, model_dir, trained):
    
    dump_dir = "/home/akajal/WatChMaL/VAE/dumps/" + run_id + "/"
    model_status = "trained" if trained is True else "untrained"
    np_arr_path = dump_dir + "samples/" + model_dir + "_" + model_status + "_samples.npy"
    
    np_arr = np.load(np_arr_path, allow_pickle=True)
    i, j = random.randint(0, np_arr.shape[0]-1), random.randint(0, np_arr.shape[0]-1)

    plot_utils.plot_actual_vs_recon(np_arr[i][0][0], np_arr[j][0][0], 
                                    label_dict[np_arr[i][1].item()], np_arr[i][2][0],
                                    show_plot=True)

    plot_utils.plot_charge_hist(np_arr[i][0][0],
                                np_arr[j][0][0], 0, num_bins=200)